How interpreting Whittaker functions as lattice models led to an unexpected duality

Henrik Gustafsson

Department of Mathematics and Mathematical Statistics Umeå University, Sweden

Workshop on the representation theory of p-adic groups and connections to quantum groups, geometry and combinatorics

University of Amsterdam
May 1, 2023

Slides available at https://hgustafsson.se

Papers

Joint work with Ben Brubaker, Valentin Buciumas and Daniel Bump

- O. Vertex operators, solvable lattice models and metaplectic Whittaker functions Communications in Mathematical Physics 380 (Dec, 2020), 535–579
 - Colored five-vertex models and Demazure atoms Journal of Combinatorial Theory, Series A 178 (Feb, 2021)
 - 2. Colored vertex models and Iwahori Whittaker functions arXiv:1906.04140
 - Metaplectic Iwahori Whittaker functions and supersymmetric lattice models arXiv:2012.15778
 - 4. Iwahori-metaplectic duality (recently updated) arXiv:2112.14670

Include both pure representation theoretical and lattice model results focus today

Outline

Origin: study p-adic Whittaker functions using lattice models.

- Construct first toy lattice model describing Schur polynomials.
- Define the spherical Whittaker functions we study.
- Refine to Iwahori Whittaker functions by adding colors to lattice model.
- Metaplectic covers and Whittaker functions.
- Iwahori-metaplectic duality.

Why lattice models?

- Powerful toolbox from statistical mechanics to manipulate models and prove identities.
- Building new bridges between widely different mathematical objects.
 (See also Paper 0).
- Surprisingly effective at describing these representation theoretical objects: bijection of data, highly constrained by solvability conditions.
- Generator of ideas and conjectures.

First toy lattice model

Schur polynomials

First toy lattice model

Construct lattice model describing Schur polynomials "Half-way" to Whittaker functions.

Achieved by using an already known combinatorial description. (This is not the case in our papers – we use solvability of the lattice model)

The lattice model consists of a two-dimensional grid with r rows, sufficiently many columns, and each vertex has four adjacent edges.

We will assign data to these edges according to certain rules, and in this first example the data is binary: the edge is **filled in**, or not.

These edges will form paths on the grid, and for given boundary conditions there is a finite number of configurations called states.

First toy lattice model

These edges will form paths on the grid, and for given boundary conditions there is a finite number of configurations called states.

A state \mathfrak{s} is assigned a Boltzmann weight $\beta(\mathfrak{s}) \in \mathbb{C}[\mathbf{z}]$ depending on parameters $\mathbf{z} = (z_1, z_2, \dots, z_r) \in \mathbb{C}^r$ (one for each row).

The partition function, given som fixed boundary conditions:

$$Z:=\sum_{\substack{\text{state }\mathfrak{s}\\\text{with given b.c.}}}\beta(\mathfrak{s})$$

Goal: any Schur polynomial in z =such a partition function.

Schur polynomials

Let $\lambda = (\lambda_1, \dots \lambda_r)$ be a partition of r padded with zeroes to length r. We define the Schur polynomial $s_{\lambda} : \mathbb{C}^r \to \mathbb{C}$ by

$$s_{\lambda}(\mathbf{z}) = \frac{\det(z_i^{(\lambda+\rho)_j})_{ij}}{\det(z_i^{\rho_j})_{ij}}$$

where $\mathbf{z} = (z_1, \dots, z_r)$ and $\rho = (r - 1, r - 2, \dots, 1, 0)$.

Combinatorial description using Semi-Standard Young Tableaux of shape λ

$$s_{\lambda}(\mathbf{z}) = \sum_{T \in SSYT(\lambda)} \mathbf{z}^{\text{wt}(T)}$$

$$\lambda = (3,1,1) \qquad \text{SSYT}(\lambda) \ni T = \boxed{ \begin{array}{c} 1 & 1 & 2 \\ \hline 5 & \end{array}} \qquad \text{wt}(T) = (2,2,0,0,1)$$

SSYT ←→ south-east moving lattice paths (certain)

$$T = \begin{array}{|c|c|} \hline 1 & 3 \\ \hline 2 & \\ \hline \end{array}$$

0

Let $\lambda^{(i)}(T) \in \mathbb{Z}^i$ be the shape of T after removing labels larger than i

$$\lambda^{(3)}(T) = \operatorname{shape}\left(\frac{1}{2}\right) = (2, 1, 0)$$
$$\lambda^{(2)}(T) = \operatorname{shape}\left(\frac{1}{2}\right) = (1, 1)$$
$$\lambda^{(1)}(T) = \operatorname{shape}\left(1\right) = (1)$$

These will label which columns are filled in for each row.

$$T = \boxed{\begin{array}{c|c} 1 & 3 \\ \hline 2 \end{array}}$$

Let $\lambda^{(i)}(T) \in \mathbb{Z}^i$ be the shape of T after removing labels larger than i

$$\lambda^{(3)}(T) = \operatorname{shape}\left(\frac{\boxed{1}}{2}\right) = (2, 1, 0)$$
$$\lambda^{(2)}(T) = \operatorname{shape}\left(\frac{\boxed{1}}{2}\right) = (1, 1)$$
$$\lambda^{(1)}(T) = \operatorname{shape}(\boxed{1}) = (1)$$

These will label which columns are filled in for each row.

To avoid overlapping edges we add $\rho^{(r)} = (r-1, r-2, \dots, 1, 0)$ to each shape:

$$\left\{ \begin{array}{l} \lambda^{(3)}(T) + \rho^{(3)} \\ \lambda^{(2)}(T) + \rho^{(2)} \\ \lambda^{(1)}(T) + \rho^{(1)} \end{array} \right\} = \left\{ \begin{array}{l} 4 \\ 2 \\ 1 \end{array} \right.$$

Gelfand-Tsetlin pattern

$$T = \boxed{\begin{array}{|c|c|}\hline 1 & 3 \\ \hline 2 & \end{array}}$$

Let $\lambda^{(i)}(T) \in \mathbb{Z}^i$ be the shape of T after removing labels larger than i

$$\lambda^{(3)}(T) = \operatorname{shape}\left(\frac{\boxed{1}}{2}\right) = (2, 1, 0)$$
$$\lambda^{(2)}(T) = \operatorname{shape}\left(\frac{\boxed{1}}{2}\right) = (1, 1)$$
$$\lambda^{(1)}(T) = \operatorname{shape}(\boxed{1}) = (1)$$

These will label which columns are filled in for each row.

To avoid overlapping edges we add $\rho^{(r)}=(r-1,r-2,\ldots,1,0)$ to each shape:

$$\left\{ \begin{array}{l} \lambda^{(3)}(T) + \rho^{(3)} \\ \lambda^{(2)}(T) + \rho^{(2)} \\ \lambda^{(1)}(T) + \rho^{(1)} \end{array} \right\} = \left\{ \begin{array}{l} 4 & 2 & 0 \\ 2 & 1 \\ 1 & 1 \end{array} \right\}$$

Gelfand-Tsetlin pattern

$$T = \boxed{\begin{array}{|c|c|} 1 & 3 \\ \hline 2 & \end{array}}$$

Let $\lambda^{(i)}(T) \in \mathbb{Z}^i$ be the shape of T after removing labels larger than i

$$\lambda^{(3)}(T) = \operatorname{shape}\left(\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}\right) = (2, 1, 0)$$
$$\lambda^{(2)}(T) = \operatorname{shape}\left(\begin{bmatrix} 1 \\ 2 & 1 \end{bmatrix}\right) = (1, 1)$$
$$\lambda^{(1)}(T) = \operatorname{shape}\left(\begin{bmatrix} 1 \\ 1 & 1 \end{bmatrix}\right) = (1)$$

These will label which columns are filled in for each row.

To avoid overlapping edges we add $\rho^{(r)} = (r-1, r-2, \dots, 1, 0)$ to each shape:

$$\left\{ \begin{array}{l} \lambda^{(3)}(T) + \rho^{(3)} \\ \lambda^{(2)}(T) + \rho^{(2)} \\ \lambda^{(1)}(T) + \rho^{(1)} \end{array} \right\} = \left\{ \begin{array}{ll} 4 & 2 & 0 \\ & 2 & 1 \\ & & 1 \end{array} \right\}$$

Gelfand-Tsetlin pattern

$$T = \boxed{\begin{array}{c|c} 1 & 3 \\ \hline 2 & \end{array}}$$

Five different vertex configurations:

 $\operatorname{SSYT} \overset{\sim}{\longleftrightarrow}$ lattice paths using these vertex configurations shape λ filled in top boundary edges at columns $\lambda + \rho$

Goal: capture $\mathbf{z}^{\text{wt}(T)}$ using lattice model data

$$s_{\lambda}(\mathbf{z}) = \sum_{T \in SSYT(\lambda)} \mathbf{z}^{\text{wt}(T)}$$

 $\operatorname{wt}(T)$ counts the number of filled in left-edges in each row

Introduce row parameters $z_1, \ldots, z_r \in \mathbb{C}$ and vertex weights at row i

$$T = \begin{array}{|c|c|} \hline 1 & 3 \\ \hline 2 & \\ \hline \end{array}$$

Five different vertex configurations:

$$\beta(\mathfrak{s}) = z_1^3 z_2^2 z_3$$

Goal: capture $\mathbf{z}^{\operatorname{wt}(T)}$ using lattice model data

$$s_{\lambda}(\mathbf{z}) = \sum_{T \in SSYT(\lambda)} \mathbf{z}^{\text{wt}(T)}$$

Boltzmann weight $\beta(\mathfrak{s}) := \prod_{\text{vertex}} \text{vertex weights } = \mathbf{z}^{\rho} \cdot (w_0 \mathbf{z})^{\text{wt}(T)}$ $\frac{w_0(z_1, z_2, \dots, z_r) = (z_r, \dots, z_2, z_1)}{v_0(z_1, z_2, \dots, z_r)}$

Partition function
$$Z(\lambda, \mathbf{z}) := \sum_{\mathfrak{s} \text{ with top } \lambda + \rho} \beta(\mathfrak{s}) = \mathbf{z}^{\rho} s_{\lambda}(w_0 \mathbf{z}) = \mathbf{z}^{\rho} s_{\lambda}(\mathbf{z})$$

From 5 to 6 vertex configurations

Symmetry of vertex configurations using arrow description

Weights are adjusted for solvability (to satisfy Yang-Baxter equation).

From 5 to 6 vertex configurations

These new weights introduce a slight deformation of the partition function

$$Z(\lambda; \mathbf{z}) = \mathbf{z}^{\rho} \prod_{i < j} (1 - v \frac{z_j}{z_i}) s_{\lambda}(\mathbf{z})$$

[Tokuyama 1988, Hammel-King 2007, Brubaker-Bump-Friedberg 2009]

If v=-1 then a flip preserves the Boltzmann weight of the state. The flip can be used to prove Cauchy identity for Schur polynomials.

$$Z(\lambda; \mathbf{z}) = \mathbf{z}^{\rho} \prod_{i < j} (1 - v \frac{z_j}{z_i}) s_{\lambda}(\mathbf{z})$$

is a Whittaker function

$$G=\mathrm{GL}_r(F)$$
 $B=\left(egin{array}{ccc} *\cdots * \ \ddots & \vdots \ *\end{array}
ight)$ $N=\left(egin{array}{ccc} 1 & * \ \ddots & 1 \ \end{array}
ight)$ Character $\psi:N o\mathbb{C}^ imes$

(principal; standard)

Here $F = \mathbb{Q}_p$ for simplicity.

Whittaker model $\pi \stackrel{\sim}{\longrightarrow} \mathcal{W}_{\psi}(\pi) \subset \operatorname{Ind}_{N}^{G}(\psi)$

Image of G-equivariant embedding in $\{f:G\to\mathbb{C}\mid f(ng)=\psi(n)f(g)\}$

Whittaker function $\in \mathcal{W}_{\psi}(\pi)$

We will consider:

Unramified principal series representation $\pi_{\mathbf{z}}$ given by $\mathbf{z} \in (\mathbb{C}^{\times})^r$

 $f:G\to\mathbb{C}$ induced from B using an unramified character determined by \mathbf{z}

$$G = \operatorname{GL}_r(F) \qquad B = \begin{pmatrix} * \cdots * \\ \ddots \vdots \\ * \end{pmatrix} \qquad N = \begin{pmatrix} 1 & * \\ \ddots & 1 \end{pmatrix} \qquad \begin{array}{c} \operatorname{Character} \\ \psi : N \to \mathbb{C}^{\times} \\ \text{(principal; standard)} \end{array}$$

Whittaker model

$$\pi \stackrel{\sim}{\longrightarrow} \mathcal{W}_{\psi}(\pi) \subset \operatorname{Ind}_{N}^{G}(\psi)$$

Whittaker function $\in \mathcal{W}_{\psi}(\pi)$

Unramified principal series representation π_z given by $\mathbf{z} \in (\mathbb{C}^{\times})^r$

Embedding given by

$$\pi_{\mathbf{z}} \ni f: G \to \mathbb{C}$$
 $\mathcal{W}_{\psi}(f): g \longmapsto \int_{N} f(w_{0}ng)\psi(n)^{-1}dn$ Long Weyl group element

The Whittaker model is unique if it exists [Gelfand-Kazhdan 1972, Rodier 1973].

$$G = \operatorname{GL}_r(F) \qquad B = \begin{pmatrix} * \cdots * \\ \ddots \vdots \\ * \end{pmatrix} \qquad N = \begin{pmatrix} 1 & * \\ \ddots & 1 \end{pmatrix} \qquad \begin{array}{c} \operatorname{Character} \\ \psi : N \to \mathbb{C}^\times \\ \text{(principal; standard)} \end{array}$$

Whittaker model

$$\pi \stackrel{\sim}{\longrightarrow} \mathcal{W}_{\psi}(\pi) \subset \operatorname{Ind}_{N}^{G}(\psi)$$

Whittaker function
$$\in \mathcal{W}_{\psi}(\pi)$$
 $\mathcal{W}_{\psi}(f): g \longmapsto \int_{N} f(w_{0}ng)\psi(n)^{-1}dn$

Unramified principal series representation $\pi_{\mathbf{z}}$ given by $\mathbf{z} \in (\mathbb{C}^{\times})^r$

ightharpoonup Right-invariant under $K:=\mathrm{GL}_r(\mathbb{Z}_p)$

There is a unique spherical vector $f_{\mathbf{z}}^{\circ}$ in $\pi_{\mathbf{z}}$ up to normalization.

The corresponding spherical Whittaker function $\mathcal{W}_{\psi}(f_{\mathbf{z}}^{\circ})$ is determined by its values on $g = p^{\lambda} := \operatorname{diag}(p^{\lambda_1}, \dots, p^{\lambda_r})$ with $\lambda \in \mathbb{Z}^r$ as

$$\mathcal{W}_{\psi}(f_{\mathbf{z}}^{\circ})(p^{\lambda}) = \prod_{i < j} (1 - p^{-1} \frac{z_{j}}{z_{i}}) s_{\lambda}(\mathbf{z}) = \mathbf{z}^{-\rho} Z(\lambda; \mathbf{z}) \text{ with } v = p^{-1} \text{ lattice model partition function}$$

[Casselman 1980, Casselman-Shalika 1980]

Lattice models for other Whittaker functions

Lattice models for other Whittaker functions

Number theory generalization [Brubaker–Bump–Chinta– Friedberg–Gunnells 2012]

spherical vector for $G = \mathrm{GL}_r(\mathbb{Q}_p)$

Representation theory refinement Papers 1 & 2

spherical vector for metaplectic n-cover \tilde{G} of G

Iwahori fixed vector for $G = \mathrm{GL}_r(\mathbb{Q}_p)$

Iwahori fixed vector for metaplectic n-cover \tilde{G} of G

Blue terms will be defined in the next slides

Lattice models for other Whittaker functions

Blue terms will be defined in the next slides

$$f^{\circ}(gk) = f^{\circ}(g)$$
 for $k \in K := \mathrm{GL}_r(\mathbb{Z}_p)$ maximal compact

unique up to normalization

Iwahori fixed vector for
$$G = \mathrm{GL}_r(\mathbb{Q}_p)$$

$$f(gk) = f(g)$$
 for $k \in J \equiv B^- \pmod{p} \subset K$ Iwahori subgroup

basis enumerated by $W = S_r$

$$G = BK$$

$$B = \begin{pmatrix} * \cdots * \\ \vdots \\ * \end{pmatrix}$$

$$B^{-} = \begin{pmatrix} * \\ \vdots \\ * \cdots * \end{pmatrix}$$

$$G = \bigsqcup_{w \in W = S_r} BwJ$$

Refinement: $f_{\mathbf{z}}^{\circ} = \sum_{w \in W} f_{\mathbf{z}}^{(w)}$ each supported only on BwJ

On the lattice model side this refinement corresponds to assigning a different color to each path, making them distinct.

Schematically (with details to follow):

Schur polynomial

Paper 1 (5-vertex; v = 0) Paper 2 (6-vertex; $v \neq 0$)

spherical Whittaker function

Duplicate colors: Demazure characters Duplicate colors: parahoric Whittaker functions

Demazure atoms

Iwahori Whittaker functions

Ordered palette of r colors: R > B > G

New right boundary data: permutation $w \in S_r$ of (R, B, G)

Have constructed vertex configuration weights such that the partition function is refined to:

uncolored
$$Z(\lambda;\mathbf{z}) = \sum_{w \in S_r} Z(\lambda,w;\mathbf{z}) \quad \text{colored}$$

[Papers 1 & 2] Concept based on [Borodin–Wheeler 2018]

uncolored
$$Z(\lambda; \mathbf{z}) = \sum Z(\lambda, w; \mathbf{z})$$
 colored

 $w \in S_r$

In more detail:

Paper 1 (5-vertex; v = 0)

Bijection of data

 $states \longleftrightarrow crystal \ Demazure \ atoms$

Theorem:

$$Z(\lambda, w; \mathbf{z})_{v=0} = \text{Demazure atom}$$

 $\sum_{w \in S_r} \longrightarrow$ Schur polynomial

Paper 2 (6-vertex; $v \neq 0$)

boundary data \longleftrightarrow Whittaker data

Theorem:

$$Z(\lambda, w; \mathbf{z})_{v=p^{-1}} = \text{Iwahori Whittaker function } \mathcal{W}_{\psi}(f_{\mathbf{z}}^{(w)})(p^{\lambda})$$

$$\sum_{w \in S_r} \longrightarrow$$
 Spherical Whittaker function

When w=1 there is only one allowed state, and the partition function can easily be computed to be $\mathbf{z}^{\lambda+\rho}$.

Lattice model is solvable, i.e. satisfies Yang–Baxter equations from underlying quantum group, which gives:

Theorem: [Papers 1, 2]
$$Z(\lambda, s_{i_1} \cdots s_{i_r}; \mathbf{z}) = T_{i_1} \cdots T_{i_r} \mathbf{z}^{\lambda+\rho}$$

Divided difference Demazure operators —

$$T_i f(\mathbf{z}) = \frac{\mathbf{z}^{\alpha_i} - v}{1 - \mathbf{z}^{\alpha_i}} f(s_i \mathbf{z}) + \frac{v - 1}{1 - \mathbf{z}^{\alpha_i}} f(\mathbf{z})$$

Same relations as for Whittaker functions in [Brubaker-Bump-Licata 2015] (non-metaplectic)

Yang-Baxter equations

What happens when two rows of the lattice are switched?

The Yang-Baxter equation gives the answer for one column and includes a new type of vertex between rows:

$$Z\left(\begin{array}{c} z_2 & b \\ z_2 & b \\ \end{array} \begin{array}{c} * & d \\ \hline \\ z_1 & a \\ \end{array} \right) = Z\left(\begin{array}{c} c \\ \hline \\ z_2 & b \\ \hline \\ z_1 & a \\ \end{array} \begin{array}{c} * & d \\ \hline \\ z_1 & a \\ \end{array} \right)$$

Yang-Baxter equations

$$Z \begin{pmatrix} z_2 & b & & & & \\ & z_2 & b & & & & \\ & & & & & \\ & z_1 & a & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Train argument

Yang-Baxter equations

Train argument

We can solve for $Z(\lambda, s_1w; s_1\mathbf{z})$ in terms of $Z(\lambda, w; s_1\mathbf{z})$ and $Z(\lambda, w; \mathbf{z})$

Recursion relation in terms of Demazure (divided difference) operators

Quantum groups

Solutions to the Yang-Baxter equations arise from quantum groups. For the lattice models these are the following q-deformations of universal enveloping algebras:

	$\mathrm{GL}_r(F)$	metaplectic $n ext{-cover of }\mathrm{GL}_r(F)$
spherical	$U_qig(\widehat{\mathfrak{gl}}(1 1)ig)$	$U_qig(\widehat{\mathfrak{gl}}(1 n)ig)$
Iwahori (colored)	$U_qig(\widehat{\mathfrak{gl}}(r 1)ig)$	$U_qig(\widehat{\mathfrak{gl}}(r n)ig)$

If the quantum group modules are known for the horizontal and vertical edge configurations then one can compute the Boltzmann weights and the R-matrix directly from the quantum group.

Automatically satisfy Yang-Baxter equations.

The module for the vertical edges is not known for any of the lattice models in this talk. The weights had to be constructed, and the Yang-Baxter equations had to be checked by hand.

Paper 3 (metaplectic)

Theorem: [Papers 1, 2]
$$Z(\lambda, s_{i_1} \cdots s_{i_r}; \mathbf{z}) = T_{i_1} \cdots T_{i_r} \mathbf{z}^{\lambda+\rho}$$

Divided difference Demazure operators —

$$T_i f(\mathbf{z}) = \frac{\mathbf{z}^{\alpha_i} - v}{1 - \mathbf{z}^{\alpha_i}} f(s_i \mathbf{z}) + \frac{v - 1}{1 - \mathbf{z}^{\alpha_i}} f(\mathbf{z})$$

Same relations as for Whittaker functions in [Brubaker-Bump-Licata 2015] (non-metaplectic)

[Chinta-Gunnells-Puskás 2017, Patnaik-Puskás 2017] (metaplectic)

Metaplectic groups

Metaplectic groups

Blue terms will be defined in the next slides

Metaplectic Whittaker functions

The metaplectic n-cover \tilde{G} of G is a central extension:

$$1 \longrightarrow \langle e^{2\pi i/n} \rangle \longrightarrow \tilde{G} \xrightarrow{\operatorname{proj}} G \longrightarrow 1 \qquad \tilde{T} := \operatorname{proj}^{-1}(T) \ \, \text{not abelian}$$

$$\stackrel{\clubsuit}{\longleftarrow} \operatorname{group of} n\text{-th roots of unity}$$

The principal series representation $\pi_{\mathbf{z}}$ with $\mathbf{z} \in (\mathbb{C}^{\times})^r$ is constructed similarly, but is now vector-valued of dimension n^r .

See for example [Savin 04, McNamara 16]

$$T = \begin{pmatrix} * \\ \cdot \\ \cdot \\ \cdot \\ * \end{pmatrix} \subset G \qquad \text{abelian} \longrightarrow \text{its irreps are 1-dimensional}$$

$$\tilde{T}/\text{max abelian} \cong \Lambda/n\Lambda \cong (\mathbb{Z}/n\mathbb{Z})^r$$

$$\text{weight lattice}$$

[Matsumoto 1969, Kazhdan-Patterson 1984, Brylinski-Deligne 2001, McNamara 2012]

Metaplectic Whittaker functions

The metaplectic n-cover \tilde{G} of G is a central extension:

$$1 \longrightarrow \langle e^{2\pi i/n} \rangle \longrightarrow \tilde{G} \xrightarrow{\operatorname{proj}} G \longrightarrow 1 \qquad \quad \tilde{T} := \operatorname{proj}^{-1}(T) \ \, \operatorname{not \ abelian}$$

$$T = \begin{pmatrix} * \\ \ddots \\ * \end{pmatrix} \subset G$$
 abelian \tilde{T}/\max

 $T = \begin{pmatrix} * \\ \cdot \\ \cdot \\ * \end{pmatrix} \subset G \qquad \text{abelian} \longrightarrow \text{its irreps are 1-dimensional}$ $\tilde{T}/\text{max abelian} \cong \Lambda/n\Lambda \cong (\mathbb{Z}/n\mathbb{Z})^r$

Whittaker module no longer unique; project to component $\sigma \in (\mathbb{Z}/n\mathbb{Z})^r$. Thus, we get a basis of n^r metaplectic spherical Whittaker functions.

Often, (e.g. [Chinta-Gunnells-Puskás 2017, Patnaik-Puskás 2017, McNamara 2016, Sahi-Stokman-Venkateswaran 2022) the σ -average is considered.

Metaplectic groups

Includes the others as subcases

Metaplectic Iwahori lattice model

Two sets of r paths assigned colors from two different palettes:

- r colors distinct south-east moving paths
- n supercolors south-west moving paths \leftarrow (dotted)

Boltzmann weights with Gauss sums

Boundary data:

group argument $g = p^{\lambda}$

Iwahori basis $w \in S_r$

Theorem: [Paper 3]

 $Z(\lambda, w, \sigma; \mathbf{z}) = \text{metaplectic Iwahori Whittaker function } \mathcal{W}^{\sigma}_{\psi}(f_{\mathbf{z}}^{(w)})(p^{\lambda})$

Bijection: boundary data \longleftrightarrow Whittaker function data

Metaplectic Iwahori lattice model

Theorem: [Paper 3]

 $Z(\lambda, w, \sigma; \mathbf{z}) = \text{metaplectic Iwahori Whittaker function } \mathcal{W}^{\sigma}_{\psi}(f_{\mathbf{z}}^{(w)})(p^{\lambda})$

Bijection: boundary data \longleftrightarrow Whittaker function data

Theorem: [Papers 2 & 3]

Summing over color permutations $w \longleftrightarrow$ equating colors

Metaplectic spherical Whittaker function obtained by equating all colors after which south-east moving paths become superfluous. Gives a reinterpretation of the metaplectic spherical lattice models by [Brubaker–Bump–Chinta–Friedberg–Gunnels 2012]

spherical vector for metaplectic
$$n$$
-cover \tilde{G} of G Paper 4 Iwahori fixed vector for $G = \operatorname{GL}_r(\mathbb{Q}_p)$ $\phi_w(\mathbf{z};g)$ $\sigma \in (\mathbb{Z}/n\mathbb{Z})^r$ $\phi_w(\mathbf{z};g)$ $w \in S_r$

Theorem: Their associated lattice models are part of a parametric family of lattice models related by so-called Drinfeld twists of the underlying quantum group.

Theorem:

If the parts of σ are distinct then $\tilde{\phi}_{\sigma}^{\circ}(\mathbf{z};g) = (\text{Gauss sums}) \cdot \phi_w(\mathbf{z}^n;g')$.

If the parts of σ are identical then $\tilde{\phi}^{\circ}_{\sigma}(\mathbf{z};g) = \phi^{\circ}(\mathbf{z}^n;g') := \sum_{w \in S_r} \phi_w(\mathbf{z}^n;g')$

Conjecture: in general $\tilde{\phi}^{\circ}_{\sigma}(\mathbf{z};g)\approx$ (non-metaplectic parahoric Whittaker function) with more complicated insertions of Gauss sums.

spherical vector for metaplectic n-cover \tilde{G} of G

Iwahori fixed vector for $G = \mathrm{GL}_r(\mathbb{Q}_p)$

Idea:

There is also a representation theoretical version using Demazure operators

Iwahori fixed vector for $G = \mathrm{GL}_r(\mathbb{Q}_p)$

Metaplectic Iwahori lattice model and R-matrix:

Summary

partition functions

Whittaker functions

n-cover \tilde{G} of G

PhD position in representation theory and number theory https://umu.varbi.com/en/what:job/jobID:616296/
Deadline May 14

Thank you!

Slides are available at

https://hgustafsson.se