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Outline

Origin: study p-adic Whittaker functions using lattice models.

¥ Construct first toy lattice model describing Schur polynomials.

¥ Define the spherical Whittaker functions we study.

¥ Refine to Iwahori Whittaker functions by adding colors to lattice model.
¥ Metaplectic covers and Whittaker functions.

¥ lwahoribmetaplectic duality.



Why lattice models?

Powerful toolbox from statistical mechanics to manipulate models
and prove identities.

Building new bridges between widely different mathematical objects.
(See also Paper 0).

Surprisingly effective at describing these representation theoretical
objects: bijection of data, highly constrained by solvability conditions.

Generator of ideas and conjectures.



First toy lattice model

Schur polynomials



First toy lattice model

Construct lattice model describing Schur polynomials
"Half-way" to Whittaker functions.

Achieved by using an already known combinatorial description.
(This Iis not the case in our papers D we use solvablility of the lattice model)

The lattice model consists of a two-dimensional grid with r rows,
sufficiently many columns, and each vertex has four adjacent edges.

We will assign data to these edges according to certain rules, and in
this first example the data is binary: the edge is filled in, or not.

These edges will form paths on the grid, and
for given boundary conditions there is a finite
number of configurations called states.




First toy lattice model

/1 These edges will form paths on the grid, and

L2

£3

A state s is assigned a Boltzmann weight 3(s)

for given boundary conditions there is a finite
number of configurations called states.

 (Jz] depending on

parameters z = (21,2, ...,2,) LCF (one for each row).

The partition function, given som fixed boundary conditions:

Z = B(s)

~ state s
with given b.c.

Goal: any Schur polynomial in z = such a partition function.



Schur polynomials

Let A = (A1,...Ar) be a partition of r padded with zeroes to length r. We
define the Schur polynomial s) : C' - C by

det(ZiO\_l_p)j )ij
det(zf" )ij

sa(z) =

where z = (24,...,Z7)andp=(r—1,r—2,...,1,0).
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Lattice paths

SSYT - wsyxlli ewx gszirk jexagi texlw
(certain)

4 3 2 1 0

A LT
T = rvs3w

Let AD(T) CZF be the shape of T after removing labels larger than i

AS(T) =shape 5> =(2,1,0) These will label which columns are
2 | 1i L filled in for each row.

AC(T) =shape 51 =(1,1)
) [

AD(T) = shape 1] = (1)
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3 Lattice paths @ (0

Let AO(T) CZF be the shape of T after removing labels larger than i

°l =(2,1,0) These will label which columns are
Ll filled in for each row.

AC)(T) = shape

|
=11

N| - N| -

A)(T) = shape

(1 [
AD(T) =shape [1] = (1)

To avoid overlapping edges we add p(? = (r—1,r—2,...,1,0) to
each shape:

M) 0@ Ekm @ @
C)(T) + p@ — 2 1
I:%l)(__) + o I ) 1 [ 1

Gelfand-Tsetlin pattern




Let A)(T)

AC)(T) = shape

N| - N| -

A)(T) = shape

[ 1
1

]
AD(T) = shape = (1)

3l =(2,1,0)

|
=11

Lattice paths

N
\J
P EE
\J

7! be the shape of T after removing labels

filled in for each row.

arger than i

These will label which columns are

To avoid overlapping edges we add p(? = (r—1,r—2,...,1,0) to

each shape:

X (

%

A | )
)+p® /A 2 0 [
@ =
;:3(1) 1) |@1@ )

Gelfand-Tsetlin pattern



3 Lattice paths

0

Let AO(T) CZF be the shape of T after removing labels larger than i

°l =(2,1,0) These will label which columns are
Ll filled in for each row.

AC)(T) = shape

N| - N| -

|
=11
[ ]

= (1)

A)(T) = shape

[ 1
1

AD(T) = shape

To avoid overlapping edges we add p(? = (r—1,r—2,...,1,0) to
each shape:

FRPT) +p® EAEE 2 0
C)(T) + p@ — 2 1
I:%l)(__) + o I ) @ [ 1

Gelfand-Tsetlin pattern




c_[1T3 Lattice paths [
2 Z5

Five different vertex configurations:

SSYT = pexxgi texlw ywirk xhi wi zi vxi | gsrAkyvexisrw
wleti A Apih ir xst fsyrhev} rthkiw ex gspygrw A +p

Ksep getxyvi zWHT) ywirk jexxigi gship hexe sx(2) = Z

wt(T)

T [SIYT(N)

wt(T) gsyrxw xbi ryqTiv sj Apih ir pijxlihkiwr iegl vs{

Introduce row parameters z4,...,Zr

C

and vertex weights at row I



C_[1]3 Lattice paths .

wxexi § ——— 42

£3

Five different vertex configurations:

B(s) = z{7323

Ksep getxyvi zVT) ywirk jexxigi gship hexe

Sx (Z) — ZWt(T )

T [SIYTN)

Fsp~qgerr Litklx B(s) := zivi | Litklbw = zP - (wpz)WH™)
zivxil Wo(Z1, 22, ..., Zr) = (Zry - -, Z2,21)
Tevxixisr jyrgxisr Z(A, z) .= B(s) = zPsx(wgz) = zPsp(2)

s {ixl xst A+p



From 5 to 6 vertex configurations

Symmetry of vertex configurations using arrow description

N S A

Weights are adjusted for solvabillity (to satisfy YangbBaxter equation).




From 5 to 6 vertex configurations

1 Z —V Z (1—v)z 1

N S A

XLiwr ri{ {ukhwirxwshygi e winkIx hijsvgexisr sj xI'1 tevxisr Jyrgxisr

-2} — 7P —yvi
Z(N\,z) =2 (1 V3 )sa(2)
iI<j
[Tokuyama 1988, HammelbKing 2007, BrubakerbBumpbFriedberg 2009]

jv==1xlireat tviwivziw xli Fsp~gerr {nklx sj xI1 wxexi:
The flip can be used to prove Cauchy identity for Schur polynomials.



Whittaker functions

Z\z) =2 (1—-v3)sa(2)

iI<j

IS a Whittaker function



Whittaker functions

G = GL.(F)

Non-archimedean field.

1. Bl Character
el Y:N - C*
(principal; standard)

Here F = Q, for simplicity.

Whittaker model

Image of G-equivariant

M B— Wy(m) CI0dg ()
embedding in {f: G - C|f(ng) = y(n)f(g)}

Whittaker function

We will consider:
Unramified principal

Wy, (1)

series representation 1, given by z [L{C™)"

\

f : G - Cinduced from B using an unramified character determined by z



Whittaker functions

= 1 I Character

(principal; standard)

Whittaker model T B— Wy () CIadg ()
Whittaker function [V, (1)

Unramified principal series representation 1, given by z

A
X
—’
ﬂ

Embedding given by

m, (F1:G - C  Wy(f) : gB->  f(wong)y(n) *dn
oL long Weyl group element

The Whittaker model is unique if it exists [GelfandbKazhdan 1972, Rodier 1973].



Whittaker functions

1. Bl Character
el Y:N - C*
(principal; standard)

G = GL,(F) B=L_" 1 N=

Whittaker model T B— Wy(m) CIAdg (W)

Whittaker function W, (1) Wy (F) : gB-  f(wong)P(n)~*dn
N

Unramified principal series representation 1, given by z [L.(C™)"

Right-invariant under K := GL,(Zp)
There Iis a unique spherical vector £, in 1, up to normalization.

The corresponding spherical Whittaker function Wy, (f,) Iis determined
by its values on g = p? := diag(p”, ..., p*) with A CZI' as

Wy (F)(PY) = (1—pt2)sa(2) =27 Z(A;z) with v = p~*
<] L lattice model partition function
[Casselman 1980, CasselmanbShalika 1980]



Generalizations

Lattice models for other Whittaker functions



Generalizations

Lattice models for other Whittaker functions

spherical vector

Number theory generalization ‘ for G = GL(Qp)
[BrubakerbBumpbChintab

FriedbergbGunnells 2012] Representation theory refinement
/ Papers 1 & 2

fspherlct:al lvec:or . l\wahori fixed vector
or metaplectic for G = GL
n-cover G of G r(Qp)
\ Paper 3 /
lwahori fixed vector
for metaplectic

n-cover G of G

Blue terms will be defined in the next slides



Generalizations

Lattice models for other Whittaker functions

spherical vector

Number theory generalization ‘ for G = GL(Qp)
[BrubakerbBumpbChintab

FriedbergbGunnells 2012] / Representation theory refinement

Papers 1 & 2
spherical vector duality . \wahori fixed vector
for metaplectic @
~ for G = GL
n-cover G of G Paper 4 r(Qp)
\ Paper 3 /

lwahori fixed vector
for metaplectic

n-cover G of G

Blue terms will be defined in the next slides



Generalizations

f°(gk) = f°(g) for G =BK
spherical vector k [K = GL(Zy) _
for G = GLr(Qp) maximal compact B= [

unigue up to normalization

f(gk) = f(g) for
lwahori fixed vector k LIJ=B~ (modp) LK G

. = BwJ
for G = GL((Qp) lwahori subgroup W W=,
basis enumerated by W = S,

Refinement: f; = f")  each supported only on BwJ

w W]



Generalizations

On the lattice model side this refinement corresponds to
assigning a different color to each path, making them distinct.

Schematically (with detalls to follow):

l Paper 1 (5-vertex; v =0 Paper 2 (6-vertex; v 8 0)
Schur polynomial spherical Whittaker function
Q . Q | Duplicate colors:
© | Duplicate colors: o | PUPIEA: oS
© © | parahoric Whittaker
< | Demazure characters ~ .
D o | functions
v v

Demazure atoms lwahori Whittaker functions



Color refinement
Svhivih tepxi sjrgsisw V=>F > K

4 3 2 1 0 4 3 2 1 0 4 3
R B G R

G

- > R ==

B

Ri1{ wklx fsyrhev} hexe> tivgyxexsr w LS} sj (V, F, K)

Have constructed vertex configuration weights such that the
partition function is refined to:

uncolored Z(A;z) = Z(A\,W;Z) colored
w [Sd

[Papers 1 & 2] Concept based on [BorodinbWheeler 2018]




Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R B G
G G
R B
-> 5 R + R R
B B
uncolored Z(A;z) = Z(A\,W;Z) colored
In more detail: =4 Bijection of data
Paper 1 (5-vertex; v =0) states — - crystal Demazure atoms
Theorem:

Z(A\,W;2)y=0 = Demazure atom
wrsay —> Schur polynomial

Paper 2 (6-vertex; v & 0) boundary data — - Whittaker data

Theorem:
Z (N, W; Z)y=p—1 = lwahori Whittaker function Wy (F*?)(p*)
wrsa —> Spherical Whittaker function




Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R B G
G G
R B
=3 5 R+ R R
B B
R B G

When w = 1 there is only one allowed state,
and the partition function can easily be
computed to be zA*P,

Lattice model is solvable, i.e. satisfies YangbBaxter
equations from underlying guantum group, which gives:

Theorem: [Papers 1, 2] Z,si, - -si;z2)=Ti, - T 2P

r

Divided difference Demazure operators 1
Tif(2) = 252 (si2) + 255 F(2)

1—z%i Zo‘l

Same relations as for Whittaker functions in [BrubakerbBumpbLicata 2015] (non-metaplectic)



Yang-Baxter equations

(D ®
Label edges: ! — (@O ¢ — (OO
() @
What happens when two rows of the lattice are switched?
o 0 (o
The YangbBaxter equation gives the answer for one
column and includes a new type of vertex between rows: a o

LI“I




Yang-Baxter equations

Train argument

OCOOO

09099

0

Xee

P

PR

TE

OO

OOO

00090

¢
o

P YYve ey



Train argument

Yang-Baxter equations

86
2@ O Z(A\w;2)

09009

99909

2

P YYve ey

99999

Z(AW;2z) = (D)

66688

®

TPPYY

Z1 Z zl 22@_ 21
—P 22 = () ZAw;812) HFEI® 22 + 2z H—HZA, s1w;$12) V) B) 22

P YYve ey

P YYYy oy

I 1 gerwspzi jsvZ(A,s1W;s12) ir xivQw s) Z(A, w; s12) erh Z(A, w; 2)

Recursion relation in terms of Demazure (divided difference) operators



Quantum groups

Solutions to the Yang-Baxter equations arise from quantum groups. For the

lattice models these are the following g-deformations of universal enveloping
algebras:

qgi xety gxg
GL,(F) nlgszivsj GL,(F)
, | C | C
spherical Ug gk2[1) Ug gkE[n)
. C . C
lwahori Ug %I@H) Uq %I@ n)
(colored)

Ij xIr uyerxyq kvsyt gshyjiw evi ors{r jsvxli Isvi~srxe) erh zivxige) 1thki
gsrAkyvexisrw xlir sri ger gsqtyxi xIi Fspx~gerr {itkhxw erh xi Vigexw|

hivigx} jvsq xI't uyerxyq kvsyt? D
OmmO

Automatically satisfy YangbBaxter equations. ® @ ©

X1 gshypn jsvxhi zivage) thkiwmw rsx ors{r jsver} sjxhipexigl gshiwir

xhw xepo2 X1t {nklxw leh xs i1 gsrwxvygxihl erh xI't JerklFe|xiv tuyexisrw
leh xs f1 gligoih } lerh?



Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R B G
G G
R B
= 5 R + R R
B B

( Paper 3 (metaplectic) )
Theorem: [Papers 1, 2] Z(\,Si, - +Si;z2)=Ti, T

Ir

ZA+P

Divided difference Demazure operators _1
Tif(2) = 2= F(siz) + 155 T(2)

1—z%%i zo‘l

Same relations as for Whittaker functions in [BrubakerbBumpbLicata 2015] (non-metaplectic)

( [ChintabGunnellsbPuskas 2017, PatnaikbPuskas 2017] (metaplectic) )




Metaplectic groups



Metaplectic groups

spherical vector

Number theory generalization ‘ for G = GL(Qp)
[BrubakerbBumpbChintab

FriedbergbGunnells 2012] / Representation theory refinement

Papers 1 & 2
spherical vector duality . \wahori fixed vector
for metaplectic @ B
~ for G = GL
n-cover G of G Paper 4 r(Qp)
\ Paper 3 /

lwahori fixed vector
for metaplectic

n-cover G of G

Blue terms will be defined in the next slides



Metaplectic Whittaker functions

The metaplectic n-cover G of G is a central extension:

1— "3+, GEL G—-1  T:=proj (T) not abelian ‘

t group of n-th roots of unity

The particular cover of GL,(F) we consider for lattice model interpretations is l

such that the group multiplication on T is given by [)\Gx)ﬁ:t&')]%éx,y)”“ where
X,y [, A\, p CXRAT) £2% and (, ) is the n-th Hilbert symbol.

The principal series representation 1, with z C{C>)" is
constructed similarly, but is now vector-valued of dimension n".

See for example [Savin 04, McNamara 16]

- —
L~ L G abelian — its irreps are 1-dimensional
T/max abelian EAYnA £-(A/nz)"

t weight lattice

T = -
[ ]

[Matsumoto 1969, KazhdanbPatterson 1984, BrylinskibDeligne 2001, McNamara 2012]



Metaplectic Whittaker functions

The metaplectic n-cover G of G is a central extension:

1— /3., G2, -1 T := proj X(T) not abelian

The principal series representation m, with z L(C™)" is
constructed similarly, but is now vector-valued of dimension n". l

See for example [Savin 04, McNamara 16]

[ —

[ ]
- [CHs abelian — its irreps are 1-dimensional
] - |
T/max abelian £-AYnA £-&/n2)"

Whittaker module no longer unique; project to component o L(X/n2Z2)".
Thus, we get a basis of n'* metaplectic spherical Whittaker functions.

T =

Often, (e.g. [ChintabGunnellsbPuskas 2017, PatnaikbPuskas 2017, McNamara 2016, Sahib
StokmanbVenkateswaran 2022]) the o-average is considered.



Metaplectic groups

spherical vector
for G = GL(Qp)

1-dimensional

spherical vector duality . \wahori fixed vector
for metaplectic @ _

~ for G = GL
n-cover G of G Paper 4 .r(Qp).
|S¢| = r!-dimensional

Nn'-dimensional
Paper 3

lwahori fixed vector\
for metaplectic

n-cover G of G

\ (n"- r!)—dimensionaIJ

Includes the others as subcases




Metaplectic Iwahori lattice model

Two sets of r paths assigned colors from two different palettes:

¥ r colors distinct south-east moving paths
¥ n supercolors south-west moving paths “ (dotted)
Boltzmann weights with Gauss sums

Boundary data: group argument g = p?

Eg 8§ Rg

Whittaker model
o L(X/n2)"

lwahori basis
w L SH

Theorem: [Paper 3]
Z (A, w, 0;z) = metaplectic lwahori Whittaker function W (") (p™)

Bijection: boundary data — - Whittaker function data



Metaplectic Iwahori lattice model

lwahori spherical
: : & : 6 : R :
e
R

Theorem: [Paper 3]
Z(\,w,0;z) = metaplectic lwahori Whittaker function Wﬁ(fz(w))(p)‘)

Bijection: boundary data — - Whittaker function data

Theorem: [Papers 2 & 3]
Summing over color permutations w «<— equating colors

Metaplectic spherical Whittaker function obtained by equating all colors after which
south-east moving paths become superfluous. Gives a reinterpretation of the metaplectic
spherical lattice models by [BrubakerbBumpbChintabFriedbergbGunnels 2012]



lwahoribmetaplectic duality

[Paper 4]
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lwahoribmetaplectic duality

?phe”(t:f"“ ;’eitor duality . \wahori fixed vector
or metaplectic _

N-cover 6 of G Paper 4 ore = GL"(QP)
0.(z;9) o CE/nZ)" ow(z;9) w L[S}

eorem: Their associated lattice models are part of a parametric family

lattice models related by so-called Drinfeld twists of the underlying
antum group.

eorem:

ne parts of g are distinct then c'ﬁ;(z; g) = (Gauss sums) - e (z™; gb.

ne parts of ¢ are identical then ¢ (z;9) = ¢°(2"; 9" := 0,(2": 99
w L[5

Conjecture: in general 9-(z;g) ~ (non-metaplectic parahoric Whittaker function)
with more complicated insertions of Gauss sums.

[Paper 4]



lwahoribmetaplectic duality

spherical vector ‘ duality . l\wahori fixed vector
for metaplectic @ _
P Paper 4 for G = GL((Qp)

n-cover G of G

ldea:
L

[-A correspondence Drinfeld twist

< > — < > —

equality for partition equality for states

] B functions (changes Boltzmann |
_ (not for individual states) weights and partition _
metaplectiC 5, hakerpBumpoFriedberg 2011, function) non-metaplectic
Spherical BrubakerbBuciumasbBump 2019] lwahori

There is also a representation theoretical version using Demazure operators

[Paper 4]



lwahoribmetaplectic duality

fspherict:al ?/eci[’For duality . \wahori fixed vector
or metaplectic tor G = GL
n-cover G of G Paper 4 ()

Metaplectic Iwahori lattice model and R-matrix:

dual
Whittaker functional _ _
Q(n(g)flj):; W(f)(lg:)l _ l_ mtertvlglner
KazhdandPatterson I{Qgiz_lAéi_l] n(g)fVZV_l . Qgiz_l m(9) [Agi_lfVZV_l] intertwining matrix
scattering matrix
RN — \Rr
qg—t q
/ QOO0 el
i O O ] =
L Q == Q== i O
. O O H
OO HOEO




Summary

partition functions <«—— Whittaker functions

spherical vector
for G = GL((Qp)
/ \ Papers 1 & 2
spherical vector duality . \wahori fixed vector
for metaplectic @ _
~ for G = GL
n-cover G of G Paper 4 (Qp)
\ Paper 3 /
lwahori fixed vector
for metaplectic

n-cover G of G
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Deadline May 14

Thank you!

Slides are available at

https://hgustafsson.se
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