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Outline

Origin: study p-adic Whittaker functions using lattice models.

Construct first toy lattice model describing Schur polynomials.

Define the spherical Whittaker functions we studly.

Refine to lwahori Whittaker functions by adding colors to lattice model.
Metaplectic covers and Whittaker functions.

lwahori—-metaplectic duality.



Why lattice models?

Powerful toolbox from statistical mechanics to manipulate models
and prove identities.

Building new bridges between widely different mathematical objects.
(See also Paper 0).

Surprisingly effective at describing these representation theoretical
objects: bijection of data, highly constrained by solvability conditions.

Generator of ideas and conjectures.



First toy lattice model

Schur polynomials



First toy lattice model

Construct lattice model describing Schur polynomials
"Half-way" to Whittaker functions.

Achieved by using an already known combinatorial description.
(This is not the case in our papers — we use solvability of the lattice model)

The lattice model consists of a two-dimensional grid with r rows,
sufficiently many columns, and each vertex has four adjacent edges.

We will assign data to these edges according to certain rules, and In
this first example the data is binary: the edge is filled in, or not.

These edges will form paths on the grid, and
for given boundary conditions there is a finite
number of configurations called states.




First toy lattice model

. These edges will form paths on the grid, and
for given boundary conditions there is a finite
number of configurations called states.

Z2

A state s is assigned a Boltzmann weight 8(s) € C|z] depending on
parameters z = (21, 22, ..., 2,) € C" (one for each row).

The partition function, given som fixed boundary conditions:

Z:= Y ps)

~state s
with given b.c.

Goal: any Schur polynomial in z = such a partition function.



Schur polynomials

Let A = (Aq,...\) be a partition ef » padded with zeroes to length ». We
define the Schur polynomial sy : C" — C by

(2) det(z;" "),
S = :
" det(z;” )i

where z = (z1,...,z,)and p=(r—1,r—2,...,1,0).

Combinatorial description using Semi-Standard Young Tableaux of shape A

(@)= ) 2"

TeSSYT(N)

11112 (#ones, #twos, #threes, ...)

wt(T) = (2,2,0,0,1)

(\V)

A=(3,1,1)  SSYT(\)>T =
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Not a necessary condition. Thanks to Carl Westerlund for noticing this!


Lattice paths

SSYT «— south-east moving lattice paths
(certain)

4 3 2 1 0

A7
T — r TOWS

Let A\()(T) € Z* be the shape of T after removing labels larger than i

AG)(T) = Shape( 3 ) — (2,1,0) These will label which columns are

filled Iin for each row.
) =)

AD(T) = shape([1]) = (1)

DO = DN —

A2(T) = shape(




»_[1]3 Lattice paths QL@ | (0
2

Let A()(T) € Z! be the shape of T after removing labels larger than i

A®(T) = Shape( 3 ) — (2,1,0) These will label which columns are

filled in for each row.
) = (1)

AD(T) = shape([1]) = (1)

DO — DN —

A2 (T) = shape (

To avoid overlapping edges we add p(") = (r — 1,7 — 2,...,1,0) to

each shape:
wme ) (@ @ @
AH(TY + p2) 3 = 2 1
A(l)(T) 1 p(1> 1

Gelfand-Tsetlin pattern



173 Lattice paths

N
N/

Let A()(T) € Z! be the shape of T after removing labels larger than i

A®(T) = Shape( 3 ) — (2,1,0) These will label which columns are

filled in for each row.
) = (1)

AD(T) = shape([1]) = (1)

DO — DN —

A2 (T) = shape (

To avoid overlapping edges we add p(") = (r — 1,7 — 2,...,1,0) to
each shape:

ABHTY + p3) 4 2 0
AT+ 2 =5 ()
AD(T) + p) 1

Gelfand-Tsetlin pattern



173 Lattice paths

0

Let A()(T) € Z! be the shape of T after removing labels larger than i

A®(T) = Shape( 3 ) — (2,1,0) These will label which columns are

filled in for each row.
) = (1)

AD(T) = shape([1]) = (1)

DO — DN —

A2 (T) = shape (

To avoid overlapping edges we add p(") = (r — 1,7 — 2,...,1,0) to
each shape:

ABHTY + p3) 4 2 0
AH(TY + p2) 3 = 2 1
AD(T) 4 pM O,

Gelfand-Tsetlin pattern



_[1]3 Lattice paths [

Five different vertex configurations:

SSYT +— lattice paths using these vertex configurations
shape A filled in top boundary edges at columns A + p

Goal: capture z"*(T) using lattice model data sx(z) = Z zWH(T)

| | | TeSSYT(A)
wt(7") counts the number of filled in left-edges in each row

Introduce row parameters z1,..., 2z, € C and vertex weights at row 1



»_[1]3 Lattice paths .,
- state § ——
23
Five different vertex configurations: Bls) = #5222,
1 2 Z; Z; 1
Goal: capture z**T) using lattice model data sa(z) =) 2"
TESSYT(N)
Boltzmann weight 8(s) := ][ vertex weights = 2* - (woz)™*"
vertex wo(21, 22,5 2r) = (Zry - -y 22, 21)
Partition function Z(\,z) := Z B(s) = z"sx(wpz) = z°s)(z)

s with top A4p



From 5 to 6 vertex configurations

Symmetry of vertex configurations using arrow description

N S A

Weights are adjusted for solvability (to satisfy Yang—Baxter equation).




From 5 to 6 vertex configurations

1 2 — 2 (1 —v)z 1

N S A

These new weights introduce a slight deformation of the partition function

Z(Nz) =2 | [(1 — vE)s,(z)

1<J
[Tokuyama 1988, Hammel-King 2007, Brubaker—Bump-Friedberg 2009]

If v = —1 then a flip preserves the Boltzmann weight of the state.
The flip can be used to prove Cauchy identity for Schur polynomials.



Whittaker functions
Z(N\z) =z° H(l — vz—‘;)sA(z)

1<J

IS a Whittaker function



Whittaker functions

Y : N — C*
Non-archimedean field. (principal: standard)
Here F' = Q, for simplicity.

G = GL,(F) B = N:( ) Character

Whittaker model T —— Wy(r) C Ind§ (¥)
Image of G-equivariant embedding in {f : G — C | f(ng) =v¥(n)f(9)}
Whittaker function € W, ()

We will consider:
Unramified principal series representation w, given by z € (C*)”

f : G — Cinduced from B using an unramified character determined by z



Whittaker functions

k- K 1 * Character
G = GL,.(F B — L N= |
( ) ( % ) ( .1> Y : N — C*

(principal; standard)
Whittaker model Te— Wy () C Indﬁ(w)

Whittaker function € Wy, ()

Unramified principal series representation w, given by z € (C*)"

Embedding given by

2 f:G—=C  Wy(f) : g— [ flwong)w(n) 'dn
Y T— long Weyl group element

The Whittaker model is unique if it exists |Gelfand-Kazhdan 1972, Rodier 1973].



Whittaker functions

ko X L Character
(F) % N ( '1> Y : N — C*

(principal; standard)

Whittaker model 7 —— Wy (7) € Ind§ ()
Whittaker function € Wy(m)  Wy(f) : g — / F(wong)(n)~dn
N

Unramified principal series representation w, given by z € (C*)"

Right-invariant under K := GL,.(Z,)
There is a unique spherical vector f; in m, up to normalization.

The corresponding spherical Whittaker function Wy, (f,) is determined
by its values on g = p* := diag(p™,...,p*") with A € Z" as

Wy (f)(0Y) = [[(1 —p ' 2L)sA(z) =277 Z(X;2) with v = p~!
1<J T— lattice model partition function
[Casselman 1980, Casselman-Shalika 1980]



Generalizations

Lattice models for other Whittaker functions



Generalizations

Lattice models for other Whittaker functions

spherical vector

Number theory generalization ‘ for G = GL,.(Q,)
[Brubaker—-Bump—Chinta—

Friedberg-Gunnells 2012] Representation theory refinement
/ Papers 1 & 2

spherical veC’For lwahorl fixed vector
for metap~lectlc . for G = GL,.(Q,)
n-cover G of G
\ Paper 3 /
lwahori fixed vector
for metaplectic

n-cover G of G

Blue terms will be defined in the next slides



Generalizations

Lattice models for other Whittaker functions

spherical vector

Number theory generalization ‘ for G = GL,.(Q,)
[Brubaker—-Bump—Chinta—

Friedberg-Gunnells 2012] / Representation theory refinement

Papers 1 & 2
fStheri(tJal l\/ei’FOr duality . lwahori fixed vector
or metaplectic oot
n-cover G of G Paper 4 r(Qp)
\ Paper 3 /

lwahori fixed vector
for metaplectic

n-cover G of G

Blue terms will be defined in the next slides



Generalizations

| £°(gk) = £°(g) for G =Dk
spherical vector ke K :=GL,(Z,)

T * - *k
for G = GL-(Qy) maximal compact B — -
unique up to normalization E

*
B™ =
f(gk) = f(g) for
wahori fixed vector ke J=B" (modp) C K~ _ Bw.J
for G = GL,.(Q,) lwahori subgroup CW—S
w —r

basis enumerated by W = S,

Refinement: f2 = »  fi*) each supported only on Bw.J
weWw



Generalizations

On the lattice model side this refinement corresponds to
assigning a different color to each path, making them distinct.

Schematically (with details to follow):

l Paper 1 (b-vertex; v = 0) Paper 2 (6-vertex; v # 0)
Schur polynomial spherical Whittaker function
< . A | Duplicate colors:
O - o]
o Duplicate colors: O | parahoric Whittaker
< | Demazure characters N .
) o | functions
\/ v

Demazure atoms lwahori Whittaker functions



Color refinement
Ordered palette of r colors: R > B > G

4 3 2 1 0 4 3 2 1 0 4 3
R B G R

G

-»> - k.

B

New right boundary data: permutation w € S, of (R, B, G)

Have constructed vertex configuration weights such that the
partition function is refined to:

uncolored Z(\;z) = Z Z (N, w;z)  colored

wWES,

Papers 1 & 2] Concept based on [Borodin—-\Wheeler 2018]




Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R B G
G G
R B
- 0 R i R
B B

uncolored Z(\;z) = Z Z (N, w;z)  colored

cS, y .
v Bijection of data
states +— crystal Demazure atoms

In more detalil:

Paper 1 (5-vertex; v = 0)
Theorem:

Z (A, w;z)y,—o = Demazure atom
> _wes, — Schur polynomial
Paper 2 (6-vertex; v # 0)
Theorem:

Z(A\,w;z),—,-1 = lwahori Whittaker function Wy (f3*))(p*)

ZwEST — Spherical Whittaker function

boundary data +— Whittaker data



Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R B G
G G
R B
- > R i R
B B

When w = 1 there is only one allowed state,
and the partition function can easily be
computed to be z* 7.

Lattice model is solvable, i.e. satisfies Yang—Baxter
equations from underlying quantum group, which gives:
Theorem: [Papers 1, 2] Z(\, Si, ---si2) =Ty, - Ty 2P

Divided difference Demazure operators J
Tif(z) = =52 f(si2) + 15507 f(2)

Same relations as for Whittaker functions in [Brubaker—Bump-Licata 2015] (hon-metaplectic)




Yang-Baxter equations

Label edges:

—

What happens when two rows of the lattice are switched?

The Yang—Baxter equation gives the answer for one
column and includes a new type of vertex between rows:

(
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Yang-Baxter equations

Train argument
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Yang-Baxter equations

( ®© \ ([ © )
a 020 [0%a o L9999
z ® =7 ® Z(\ w;z) = g
21 (a) () O 21 () (*) (&)
\ o ) \ 0 ) OOOOO

Train argument

09090 99090 90990

4+ o
vy vy G v iy

We can solve for Z(\, syw; s1z) in terms of Z(A, w; s1z) and Z(\, w; z)

22
Z1 _

=

7

8
@ @

Z(A w;z)

5
?

Z(A w; $12)

Z (A, s1w; $12)

Recursion relation in terms of Demazure (divided difference) operators



Quantum groups

Solutions to the Yang-Baxter equations arise from quantum groups. For the
lattice models these are the following g-deformations of universal enveloping
algebras:

metaplectic
GL,.(F) n-cover of GL,.(F)
spherical U, (gl(1]1)) U, (gl(1]n))
lwahori U, (gl(r|1)) U, (al(r[n))
(colored)

If the quantum group modules are known for the horizontal and vertical edge
configurations then one can compute the Boltzmann weights and the R-matrix

directly from the quantum group. (@)
(O—4—©

Automatically satisfy Yang—Baxter equations. ® @ @

The module for the vertical edges is not known for any of the lattice models in

this talk. The weights had to be constructed, and the Yang-Baxter equations
had to be checked by hand.



Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R G
G G
R B
- E R i R
B B

( Paper 3 (metaplectic) )
Theorem: [Papers 1, 2] Z(\, siy - si2z) =T, - T; 2P

Divided difference Demazure operators J
T,f(z) = {==t [(si2) + 1255 [ (2)

Same relations as for Whittaker functions in [Brubaker—Bump-Licata 2015] (hon-metaplectic)

( [Chinta—Gunnells—Puskas 2017, Patnaik—Puskas 201 7] (metaplectic) )




Metaplectic groups



Metaplectic groups

spherical vector

Number theory generalization ‘ for G = GL,.(Q,)
[Brubaker—-Bump—Chinta—

Friedberg-Gunnells 2012] / Representation theory refinement

Papers 1 & 2
fStheri(t:aI l\/ei’FOr duality . lwahori fixed vector
or metaplectic oot
n-cover G of G Paper 4 r(Qp)
\ Paper 3 /

lwahori fixed vector
for metaplectic

n-cover G of G

Blue terms will be defined in the next slides



Metaplectic Whittaker functions

The metaplectic n-cover G of G is a central extension:

1 — (/) @ 22h g —1 T :=proj () not abelian ‘
t group of n-th roots of unity

The particular cover of GL,.(F') we consider for lattice model interpretations is l
such that the group multiplication on T is given by [A(2), u(y)] = (z,y)** where
r,y € F*, A\ ue X (T)=7Z" and (, ) is the n-th Hilbert symbol.

The principal series representation m, with z € (C*)" is
constructed similarly, but is now vector-valued of dimension n'.

See for example [Savin 04, McNamara 16]

T = Cc G abelian — Iits irreps are 1-dimensional

T /max abelian = A/nA = (Z/nZ)"
weight lattice

[Matsumoto 1969, Kazhdan—Patterson 1984, Brylinski-Deligne 2001, McNamara 2012]



Metaplectic Whittaker functions

The metaplectic n-cover G of G is a central extension:

1 — (/) @ 22h g —1 T :=proj () not abelian

The principal series representation w, with z € (C*)" is
constructed similarly, but is now vector-valued of dimension n'.
>l<.
T = Cc G abelian — Iits irreps are 1-dimensional
X

See for example [Savin 04, McNamara 16| l
T /max abelian = A/nA = (Z/nZ)"

Whittaker module no longer unique; project to component o € (Z/nZ.)".
Thus, we get a basis of n™ metaplectic spherical Whittaker functions.

Often, (e.g. [Chinta—Gunnells—Puskas 2017, Patnaik—Puskas 2017, McNamara 2016, Sahi-
Stokman-\Venkateswaran 2022]) the o-average is considered.



Metaplectic groups

spherical vector
for G = GL,.(Q,)
1-dimensional

fStheri(t:a| l\/ei’FOr duality . lwahori fixed vector
or metaplectic ool

n-cover G of G Paper 4 (Qp)

S| = r!-dimensional

n"-dimensional
Paper 3

lwahori fixed vector\
for metaplectic

n-cover G of G

\ (n” - r!)—dimensionau

Includes the others as subcases




Metaplectic Iwahori lattice model

Two sets of r paths assigned colors from two different palettes:

e 1 colors

Boundary data:

Whittaker model
o € (Z/nZ)"

Theorem: [Paper 3]

distinct south-east moving paths
e 7 Supercolors south-west moving paths )

(dotted)

Boltzmann weights with Gauss sums

group argument g = p*

lwahori basis
w € S,

Z(\,w, 0;z) = metaplectic lwahori Whittaker function W3 (")) (»™)

Bijection: boundary data +— Whittaker function data



Metaplectic Iwahori lattice model

lwahori spherical
_ : : 5 :

LI

IGDI

@]

Theorem: [Paper 3]
Z(\,w,0;z) = metaplectic lwahori Whittaker function W;;(fz(w))(p/\)

Bijection: boundary data +— Whittaker function data

Theorem: [Papers 2 & 3]
Summing over color permutations w +— equating colors

Metaplectic spherical Whittaker function obtained by equating all colors after which
south-east moving paths become superfluous. Gives a reinterpretation of the metaplectic
spherical lattice models by [Brubaker—Bump-Chinta—Friedberg-Gunnels 201 2]



I[wahori—metaplectic duality

[Paper 4]
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[wahori—-metaplectic duality

fsfhrireli:;);/ee;fr duality . l\wahori fixed vector
r i

n-cover G of G Paper 4 for & = GL(Qy)
¢o(z;9) o €(Z/nZ)" dw(z;9) weES,

eorem: Their associated lattice models are part of a parametric family
lattice models related by so-called Drinfeld twists of the underlying

antum group.

eorem:

ne parts of ¢ are distinct then ¢2(z;9g) = (Gauss sums) P (2™ g").

ne parts of ¢ are identical then ¢°(z; g) = = > du(z":9)
weS,

Conjecture: in general ¢2(z; g) ~ (non-metaplectic parahoric Whittaker function)
with more complicated insertions of Gauss sums.

[Paper 4]



[wahori—-metaplectic duality

fspherictbal lveitor ‘ duality . lwahori fixed vector
or metaplectic <: :>
y Paper 4 for G = GL,(Qy)

n-cover G of G

|dea:
*J

I'-A correspondence Drinfeld twist

< > — < > ]

equality for partition equality for states

- B functions (changes Boltzmann |
. (not for individual states) weights and partition .
metap|eCt|C [Brubaker—Bump—Friedberg 2011 ’ fUﬂCtiOﬂ) ﬂOﬂ-metap|eCt|C
spherical Brubaker—Buciumas-Bump 2019] lwahori

There is also a representation theoretical version using Demazure operators

[Paper 4]



[wahori—-metaplectic duality

fspheri(t:aI I\/e?or duality . lwahori fixed vector
or metaplectic o — O
n-cover G of G Paper 4 r(Qp)

Metaplectic lwahori lattice model and R-matrix:

dual
Whittaker functional , |
m(g)f) = W(F)(9) j_mertwiner
KazhdaQ—Pattergon ([Q?Z_lAgi_l]) (W(g)ffj_l) — chfiz_l (7(9) [Ai;lfﬁ_l]) intertwining matrix
scattering matrix o \ i
/Rq1 Rc(f‘”) R,
/.. QR Q9 1 QO L QOO0
FH O =...= { A O = =i F OO
- O by O L O

e 56 50 6006



Summary

partition functions <«— Whittaker functions

spherical vector
for G = GL,.(Q,)
/ \ Papers 1 & 2
fspherictzal lvec?or duality . l\wahori fixed vector
or metaplectic for G = QL
n-cover G of G Paper 4 (@)
\ Paper 3 /
lwahorl fixed vector
for metaplectic

n-cover G of G




PhD position in representation theory and number theory _.::i'i '-;.' E
https://umu.varbi.com/en/what:job/joblD:616296/ LT 10
Deadline May 14

Thank you!

Slides are available at
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