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Overview

As the title suggests, the focus of this talk is the connections between the following topics:

Multiple Dirichlet series Metaplectic Whittaker functions Lattice models

My research is focused on the latter two, but since this is a number theory seminar I will
start from multiple Dirichlet series and work my way to the right.

Metaplectic here refers to Whittaker functions on a so called metaplectic cover of
a reductive group and lattice models refers to statistical mechanics models on a two-
dimensional lattice.

1. Multiple Dirichlet series

We are familiar with the usual Dirichlet series
∑∞

n=1 ann
−s with an, s ∈ C. Take for example

the series for the Riemann zeta function ζ(s) with all an = 1 which converges for Re(s) > 1.
Properly normalized as ξ(s) = π−s/2Γ(s/2)ζ(s) it satisfies the functional equation ξ(s) =
ξ(1− s) which allows us to obtain the values of the meromorphic continuation beyond the
domain of convergence.

A multiple Dirichlet series is a series in multiple variables s = (s1, . . . , sr) ∈ Cr and can
be written as

Z(s) =
∑

n1,...,nr

An1,...,nrn
−s1
1 · · ·n−srr (1.1)

I have left the summation range unspecified since we will want to sum over different rings
of integers. Early examples arise from considering usual Dirichlet series and taking the
coefficients an to be Dirichlet series themselves. Multiple Dirichlet series can be used to
study L-functions: for example their mean values and moments [Goldfeld-Hoffstein-85,
Diaconu-Goldfeld-Hoffstein-03], and nonvanishing properties via Rankin-Selberg integrals
[Friedberg-Hoffstein-95, Chinta-Friedberg-Hoffstein-06].
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The multiple Dirichlet series will have some domain of convergence and we want
functional equations for meromorphic continuation. One type of multiple Dirichlet series
that we will be interested in are so call Weyl group multiple Dirichlet series which have a
group of functional equations isomorphic to the Weyl group of a root system Φ of rank r.

For example, if Φ is of type A2 we may have the following gray area as domain of
convergence where we have projected to the real parts of s1 and s2. The functional equations
would then act as reflections in these lines transforming the domain of convergence similar
to how the fundamental Weyl chamber is mapped over the whole weight space by Weyl
transformations. We have tilted the s1 axis such that the functional equations become
reflections in these lines.

s2 = 1
2

s1 = 1
2

s2 = 1
2

s1 = 1
2

Using a variation of [Bochner-38] we can obtain a meromorphic continuation for the
complex hull of the combined domains.

The Weyl group multiple Dirichlet series have another defining property concerning the
multiplicativity of its coefficients, but to discuss that we first need some setup. We will
then specify the remaining coefficients to fully define a Weyl group multiple Dirichlet series.

Let k be an algebraic number field which contains the group µn of n-th roots of unity
which we embed in C. For convenience we will actually also assume that µ2n ⊂ k so that
−1 is an n-th power in k. Fix a finite set of places S containing all the archimedean
places as well as those ramified over Q, and large enough so that the ring of S-integers
OS = {x ∈ k : |x|ν 6 1 for all ν 6∈ S} is a principal ideal domain.

The following data
· reduced root system Φ of rank r
· s = (s1, . . . , sr) ∈ Cr
· twisting parameter m ∈ (OS)r

· Ψ in a finite dimensional vector space of functions (k×S )r → C with certain
transformation properties (will not be important here)

specifies a Weyl group multiple Dirichlet series of order n by

Z(s,m,Ψ) =
∑
c

H(c;m)Ψ(c)

|c1|2s1 · · · |cr|2sr
(1.2)
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where c = (c1, . . . , cr) and each ci ranges over (OS \ {0})/O×S and |ci| := |OS/ciOS |. The
coefficients H are left to be defined.

The twisted multiplicativity mentioned above is stated for the coefficients H. Let c =
(c1, . . . , cr) and c′ = (c′1, . . . , c

′
r). Then, if gcd(c1 · · · cr, c′1 · · · c′r) = 1,

H(c1c
′
1, . . . , crc

′
r;m) = εc,c′H(c;m)H(c′;m) (1.3)

where εc,c′ ∈ µn is a product of n-th power residue symbols. We also have a similar
property for m. This means that we only have to define H for c = (pk1 , . . . , pkr) and
m = (pl1 , . . . , plr) for primes p of OS . We create a generating series called the p-part of the
multiple Dirichlet series

∞∑
ki=0

H(pk1 , . . . , pkr ; pl1 , . . . , plr)|p|−2(k1s1+···+krsr) . (1.4)

There are several ways of defining these p-parts, and thus, several ways of defining the
Weyl group multiple Dirichlet series. These developed in parallel and at first it was not
clear if they would agree.

· Weyl group action average on the field of rational functions [Chinta-Gunnells-10]

· Sums over crystal bases or Gelfand–Tsetlin patterns (type A) [Brubaker-Bump-Friedberg-11a]

· Metaplectic p-adic Whittaker functions [BBF-11a, Chinta-Offen-13, McNamara-11, McNamara-16]

· Partition functions of lattice models (type A and C) [Brubaker-Bump-Chinta-12, Ivanov-12].
In fact there were even two ways to define the multiple Dirichlet series using Gelfand–

Tsetlin patterns and a major part of the book [Brubaker-Bump-Friedberg-11b] is devoted
to combinatorially prove their equivalence. Later, by rewriting the statement in terms of
two corresponding lattice models, their equivalence becomes drastically simplified using a
tool in statistical mechanics called the Yang–Baxter equation.

With the above H-coefficients the Weyl group multiple Dirichlet series Z has a
meromorphic continuation to s ∈ Cr [Chinta-Gunnells-10].

It was shown in [Brubaker-Bump-Friedberg-11a] that global Whittaker coefficients
of Borel Eisenstein series on metaplectic covers of GLr+1 are actually full, type A,
multiple Dirichlet series in r variables. These Whittaker coefficients satisfy the twisted
multiplicativity and are not Eulerian.

At the end of this talk I will discuss how to write down the H-coefficients using statistical
models, which is one example of a metaplectic Whittaker function that they can be used
to describe. First let us discuss these metaplectic Whittaker functions.

2. Metaplectic Whittaker functions

For convenience we will restrict to G = GLr+1. Let F be a non-archimedean local field
with ring of integers O and a choice of uniformizer p, and let q = |O/pO|. We assume that
F contains µ2n.

Let G = G(F ). Its n-fold metaplectic cover G̃ is defined by the central extension

1 −→ µn −→ G̃
pr−→ G −→ 1 (2.1)
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Fix a section s : G → G̃. As a set G̃ ∼= G × µn, but the multiplication is determined by a
choice of map σ : G×G→ µn by s(g1)s(g2) = σ(g1, g2)s(g1g2) which is a 2-cocycle defining
a class in H2(G,µn). (Associativity =⇒ closed, Choice of s =⇒ up to exact element).

We will use the explicit cocycle described in [Kazhdan-Patterson-84] based on earlier work
of [Matsumoto-69, Kubota-69]. One can also use the framework of [Brylinski-Deligne-01].
Denote the maximal torus of diagonal elements in G by T . For a weight λ = (λ1, . . . , λr) ∈
Λ ∼= Zr and x ∈ F× let xλ = diag(xλ1 , . . . , xλr) ∈ T . The cocycle is chosen such that

[s(xλ), s(yµ)] = (x, y)〈λ,µ〉 (2.2)

where (·, ·) : F× × F× → µn is the n-th power Hilbert symbol and 〈·, ·〉 is the usual inner
product on the weight space. This means that the preimage T̃ := pr−1(T ) ⊂ G̃ is not
abelian.

We want to consider Whittaker functions for an unramified principal series representation
of G̃, but let us first remind ourselves of the corresponding non-metaplectic definitions for
G.

For the non-metaplectic case, T is abelian and the irreducible representations are
isomorphic to characters χ : T → C×. Let B ⊃ T be the Borel subgroup of G of upper
triangular matrices and trivially extend χ as a function on B. Then

I(χ) := IndGB(χ) = {f : G→ C | f(bg) = χ(b)f(g) for b ∈ B, g ∈ G} (2.3)

is a principal series representation of G. We also restrict to spherical vectors, that is f which
are right invariant under the maximal compact subgroup K = GLr+1(O). These are unique
up to a constant factor and we chose such a function φK with convenient normalization.

A Whittaker functional on a representation (π, V ) of G is a linear functional W : V → C
for which

W (π(n)φ) = ψ(n)W (φ) for all n ∈ N,φ ∈ V . (2.4)

where ψ is a character on non-degenerate character on N . We may take for example the
integral

W (φ) =

∫
N
φ(n)ψ(n)−1 dn (2.5)

A Whittaker function can then be expressed as a function G → C, g 7→ W (π(g)φ) for
φ ∈ V . For the non-metaplectic case, there is a unique spherical Whittaker function
W (π(g)φK) [Gelfand-Kazhdan-71, Rodier-72]. This implies that global spherical Whittaker
coefficients are Eulerian with each factor proportional to the corresponding unique local
spherical Whittaker function.

This is not the case for metaplectic G̃. The group T̃ = pr−1(T ) is non-abelian so it
takes some work to describe its irreducible representations. We may identify the maximal
compact K with its preimage in G̃. Let H be the centralizer of T̃ ∩K in T̃ , which is abelian.
We have that T̃ /H is parametrized by cosets $λH with λ ∈ Λ/nΛ. Let χ a character on
H trivial on T̃ ∩K such that χ(ζg) = ζχ(g) for ζ ∈ µn ⊂ C×. Every irreducible unramified
representation of T̃ is isomorphic to i(χ) := IndT̃H(χ) for some χ [Savin-04].
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The module Vχ for i(χ) is of dimension |T̃ /H| = |Λ/nΛ| = nr. We make a further
trivial extension to B̃ and induction to G̃ as above to obtain the principal series I(χ), but
now these are not C-valued functions, but rather Vχ-valued. Thus, while there is still a
unique spherical vector φK in I(χ), it is vector-valued and to obtain a C-valued Whittaker
function we must pair it with an element of the dual vector space. In summary, we get a
nr-dimensional space of Whittaker functions.

This explains why global metaplectic Whittaker coefficients are, in general, not Eulerian.
Instead we get a twisted multiplicativity, which carries over to the H-coefficients in the
multiple Dirichlet series.

Indeed, with a suitable chosen functional on Vχ, we get that the Whittaker function
evaluated at g = pλ equals the p-part (1.4) with the following dictionary:

· χ is given by Langlands parameters si
· λ correspond to the l’s giving the twist m

The identification of the p-parts of the Weyl group multiple Dirichlet series as certain
metaplectic Whittaker functions was shown by [McNamara-11, Brubaker-Bump-Chinta-
Friedberg-Gunnels-12, Chinta-Offen-13] for type A and by [McNamara-16] in general.

I still have to specify how to easily compute these p-parts, or in fact any other metaplectic
Whittaker function, which I will do using lattice models.

3. Lattice models

The following is my variation of the model described in [Brubaker-Buciumas-Bump-16].
We start with a grid like below with corresponding labels of the r rows and sufficiently

many columns, and we give each vertex a label by the column number modulo n. We fix
some boundary data as follows. We mark r top boundary positions according to λ and
attribute them with a so called charge according to the vertex label. This λ will specify
the argument of the Whittaker function by g = pλ. On the left boundary we mark all
r positions with some charges γi ∈ Z/nZ. These will specify one of the nr conveniently
chosen basis elements in V ∗χ .

λ3 = 01234λ2 = 5λ1 = 67
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A state of this lattice model with these boundary conditions is then an assignment of
vertex configurations according to the following table to the remaining vertices forming
different lines between the boundary starting points. Each state is weighted by the product
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of the vertex configuration weights which contain the variable si at row i. The Whittaker
function is then computed by the partition function which is the sum of these weights over
all possible states given the fixed boundary.

b bc

c

c

c b b

c

c

c c c

c

c c

c

c

1 si g(b− c) si (1− q−1)si 1

Here g : Z/nZ → C is an n-th order Gauss sum, which is a certain sum over elements
in µn. The following is one of the possible states for the above boundary configuration.
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An advantage of rewriting the Whittaker function as the partition function of lattice
model is that one can take advantage of the many tools in statistical mechanics such as
the Yang–Baxter equation. This gives a further connection to the field of quantum groups
which was formalized by [Drinfeld-87]. The Yang-Baxter equation for the above model is
related to the particular quantum group Uq(ĝl(n|1)). As mentioned above, using a Yang–
Baxter equation [Brubaker-Bump-Chinta-12] was able to show the equivalence of the two
Gelfand–Tsetlin descriptions in a very elegant way.

Together with Brubaker, Buciumas and Bump, I am currently working on metaplectic
Whittaker functions which are not spherical, but rather invariant under a smaller Iwahori
group, which is the subgroup ofK of lower triangular matrices mod p. On the representation
theory side we evaluate these using Demazure–Lusztig type operators and define a
corresponding lattice model where we also have colored lines going from the top boundary
to the right boundary and the order of the colors on the right boundary determine an
Iwahori fixed vector enumerated by Weyl words.
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