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This talked is based on a paper together with AK & DP with the same title that we submitted to Journal of Number Theory a little over a year ago.

It also heavily leans on a review/book we submitted recently in collaboration with PF. It gives an overview of the theory of adelic automorphic forms along with the
required background. It covers how to compute F coeffs and has a lot of examples, and interesting questions and applications for both mathematics and physics.

The topmost paper was started during the work on the review. It applies some of the tools described in there, to study the types of Fourier coefficients of interest in string
theory.
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Motivation

There are many reasons for studying classical modular forms or automorphic forms and representations in both mathematics and physics.

In physics, automorphic forms are central in, for example string theory, in particular for computing scattering amplitudes and for BH microstate counting related to BH
temperature

Recently, they have also figured in statistical mechanics for describing certain types of 2 dimensional crystals. [Brubaker-Bump-Friedberg, Baxter]
Let us focus on string scattering amplitudes.
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When computing the effects of interactions one has to sum over all the possible world-sheets including a sum over different topologies which are weighted by the string
coupling to the power of minus the Euler characteristic giving us these different diagrams.



Interactions

Weighted by: g5 ** — xg = 2(genus — 1) 4+ boundaries

<+...

> + > C+ > >

When computing the effects of interactions one has to sum over all the possible world-sheets including a sum over different topologies which are weighted by the string
coupling to the power of minus the Euler characteristic giving us these different diagrams.



Interactions

r Euler characteristic

Weighted by: g5 ** — xg = 2(genus — 1) 4+ boundaries

<+...

> + > C+ > N R =Y

When computing the effects of interactions one has to sum over all the possible world-sheets including a sum over different topologies which are weighted by the string
coupling to the power of minus the Euler characteristic giving us these different diagrams.



Interactions

r Euler characteristic
Weighted by: g5 ** — xg = 2(genus — 1) 4+ boundaries
() \:\' /W\\ ',/\/-\/\_/(\‘
:>>\/8+> S C+> N = §+
N @, \f\/\(/ \\:W’
95

When computing the effects of interactions one has to sum over all the possible world-sheets including a sum over different topologies which are weighted by the string
coupling to the power of minus the Euler characteristic giving us these different diagrams.



Interactions

r Euler characteristic
Weighted by: g5 ** — xg = 2(genus — 1) 4+ boundaries
() \:\' /W\\ ',/\/-\/\_/(\‘
:>>\/8+> S C+> N = §+
957 1

When computing the effects of interactions one has to sum over all the possible world-sheets including a sum over different topologies which are weighted by the string
coupling to the power of minus the Euler characteristic giving us these different diagrams.



Interactions

r Euler characteristic
Weighted by: g5 ** — xg = 2(genus — 1) 4+ boundaries
() \:\' /W\\ ',/\/-\/\_/(\‘
:>>\/8+> S C+> N = §+
N @, \f\/\(/ \\:W’
957 1 92

When computing the effects of interactions one has to sum over all the possible world-sheets including a sum over different topologies which are weighted by the string
coupling to the power of minus the Euler characteristic giving us these different diagrams.



Interactions

Gravitons Py < in D dimensions

Let us go back to the graviton in D dimensions.

The effect of the interactions can be described by the following Taylor expansion in alpha’. The first term described ordinary Einstein gravity (alpha’ -> 0 = point particles).
The corrections are labeled by R4 D4R4 and D6R4 etc, which are known so called kinematic structure factors.

The interesting part for us though are the coefficients in front of these factors. Which we will now study and try to find.
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The coefficients are functions on a coset space G/maximal compact subgroup K called the moduli space.

The groups for different dimensions are shown in this table here and that can be visualized in this Dynkin diagram by adding simple roots in this order. Bourbaki labelling.
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D G(R) K

10 SL(2,R) SO(2) 5

9  SL(2,R) x R* SO(2)

8 SL(3,R) x SL(2,R) SO(3) x SO(2) |

7 SL(5,R) SO(5)
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Note especially 10 dim and 5, 4, 3 dim
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In ten dimensions the coset space is isomorphic to the upper half plane parametrized by the string coupling constant and a parameter called the axion.

For brevity we will denote the coefficient functions in ten dimensions as follows.
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are shown in this third column here.

These are the symmetry transformation that conserve the discrete charge lattice.
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D G(R) K G(Z)

10 SL(2,R) S0(2) SL(2,7)
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Meaning, our coefficients are functions on this space

This looks a lot like automorphic forms...
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An automorphic form is a smooth function ¢ : G(R) = C
satisfying the following conditions

which are function on G that satisfy the following conditions:
A: they are U-duality invariant
B: K-finite (we will only consider spherical automorphic forms where this is trivially satisfied)

C: they are eigenfunctions to G-invariant differential operators (such as the laplacian)
D: they are of moderate growth

To be more precise the condition C can be specified as follows where Z is the center of the universal enveloping algebra, and then X here acts as a differential operator.
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From computations in string theory using the diagrams with different genera i showed before, one can se that the coefficient functions also satisfy the growth condition.

But to answer C, we will have to study another symmetry of the theory: supersymmetry
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which is a symmetry relating bosons with fermions.

In ten dimension one obtains the following differential equations, where we see that the first two corrections satisfy the eigenfunction eq, meaning that they are
automorphic forms.

However the third correction, gets an inhomogeneous RHS, and is thus not an eigenfunction and not an automorphic form in a strict sense.
We will come back to this in the outlook. The same pattern follows for lower dimensions.
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Eisenstein series

Since we have shown that EO0 and E10 are automorphic forms, let us study a typical example of an automorphic form - a non-holomorphic Eisenstein series in ten

dimensions i.e. on SL2.
They are constructed from a character \chi on the Borel subgroup which can be seen as the imaginary part of tau to some power of a complex number s.

The Eisenstein series is then defined as a sum over images for these characters - automatically giving an SL(2,Z) invariant function.
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The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
variable tau_1.

We can then Fourier expand it wrt tau1 giving these two terms as a constant mode wrt to tau1 and here the remaining Fourier modes where...

We note that the Fourier expansion gives us the asymptotic behavior of E in the limit tau2->infty called the weak coupling limit.



Eisenstein series

Esm) = Y, x(in)= > 772 V= (f 2) € SL(2,7)

2s
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z) T +d|

(A—s(s—1))E(s;7) =0

The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
variable tau_1.

We can then Fourier expand it wrt tau1 giving these two terms as a constant mode wrt to tau1 and here the remaining Fourier modes where...

We note that the Fourier expansion gives us the asymptotic behavior of E in the limit tau2->infty called the weak coupling limit.



Eisenstein series

Esm) = Y, x(in)= > 772 V= (f 2) € SL(2,7)

2s
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z) T +d|

(A—s(s—1))E(s;7) =0
E(s;7(7)) = E(s;7)

The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
variable tau_1.

We can then Fourier expand it wrt tau1 giving these two terms as a constant mode wrt to tau1 and here the remaining Fourier modes where...

We note that the Fourier expansion gives us the asymptotic behavior of E in the limit tau2->infty called the weak coupling limit.



Eisenstein series

Bsm = Y xm= Y 2 - (f 2) € SL(2,7)

2s
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z) T +d|

(A —s(s — 1))E(S; 7)=0
E(s;v(1)) = E(s;7)  E(sit+1) = E(si7)

The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
variable tau_1.

We can then Fourier expand it wrt tau1 giving these two terms as a constant mode wrt to tau1 and here the remaining Fourier modes where...

We note that the Fourier expansion gives us the asymptotic behavior of E in the limit tau2->infty called the weak coupling limit.



Eisenstein series

Esm) = Y, x(in)= > 772 V= (f Z) € SL(2,7)

2s
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z) T +d|

(A —s(s — 1))E(S; 7)=0
E(s;v(1)) = E(s;7)  E(sit+1) = E(si7)

Fourier expansion

2% —1) ,_. 272 . |
B(sr) = 5 + )} 2= N m) T2 01 g (M) Ky (2 [m]| 7)€
#0

29 P e 4

The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
variable tau_1.

We can then Fourier expand it wrt tau1 giving these two terms as a constant mode wrt to tau1 and here the remaining Fourier modes where...

We note that the Fourier expansion gives us the asymptotic behavior of E in the limit tau2->infty called the weak coupling limit.



Eisenstein series

Bsm = Y xm= Y 2 - (f 2) € SL(2,7)

2s
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z) T +d|

(A—s(s—1))E(s;7) =0
E(s;v(1)) = E(s;7) E(sir+1) = E(s; 7)

Fourier expansion

2% —1) ,_. 272 . |
B(s;r) =75+ & )} 2= N m) T2 01 g (M) Ky (2 [m]| 7)€
#0

A — Sy =
£2s) 0 E(2s) 4
Completed Riemann zeta function

£(s) = W_'S/2F<S/2>C(S)

The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
variable tau_1.

We can then Fourier expand it wrt tau1 giving these two terms as a constant mode wrt to tau1 and here the remaining Fourier modes where...

We note that the Fourier expansion gives us the asymptotic behavior of E in the limit tau2->infty called the weak coupling limit.



Eisenstein series

Bsm = Y xm= Y 2 - (f 2) € SL(2,7)

2s
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z) T +d|

(A—s(s—1))E(s;7) =0
E(s;v(1)) = E(s;7) E(sir+1) = E(s; 7)

Fourier expansion

2% —1) ,_. 272 . |
B(s;r) =75+ & )} 2= N m) T2 01 g (M) Ky (2 [m]| 7)€
#0

29 P e 4

Completed Riemann zeta function Divisor sum

£(s) = 77T (s/2)¢(s) ou(m) =3 &

d|m

The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
variable tau_1.

We can then Fourier expand it wrt tau1 giving these two terms as a constant mode wrt to tau1 and here the remaining Fourier modes where...

We note that the Fourier expansion gives us the asymptotic behavior of E in the limit tau2->infty called the weak coupling limit.



Eisenstein series

Esm)= Y,  x(im)= 772 Y= (f 2) € SL(2,7)

2s
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z) T + d

(A —s(s — 1))E(3; 7)=0
E(377(7—>) — E(S;T> E(s;t+1)=E(s;7)

Fourier expansion

B(sir) =3+ 22D 1 | 2, S ml T2 01 ag(m) Ky jo (2 [ 7o) €2
TR e 7 T2 & ARy
Completed Riemann zeta function Divisor sum L Bessel function
£(s) = m*/2T(s/2)C(s) oy(m) = Z g8 of the second kind
d|m
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The Eisenstein series are eigenfunctions to the Laplacian with eigenvalues s(s-1), and since they are, by construction, invariant under SL(2,Z), they are periodic in the
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We now want to compare this with what we now about our coefficient functions.
From SUSY we got the following eigenfunction equations and from the string diagram computations one gets the following asymptotic behavior.

One can show that EOO and E10 are, in fact, Eisenstein series with s=3/2 and s=5/2.
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Extracting physical information

Expand Bessel function in g T=x+igs"

[Green-Gutperle]

To connect back with physics, we can extract physical information from these functions be expanding in the string coupling constant.The first two terms, zero-mode, are
perturbative in gs are exactly those that one obtains from string computations with the genus diagrams.

The remaining modes gives us non-perturbative corrections in gs - and these are particularly interesting since they cannot be obtained from the standard genus
expansion with string diagrams | showed before.

In the exponential we see, what is called the instanton action, which comes from certain solutions to the Einstein equation called instantons. These are the objects that
give rise to non-perturbative effects. They are labeled by the mode m which we call instanton charges.
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In front of the exponential we have an instanton measure counting the number of states for a given instanton charge m, which we find is the number of ways m can be
factorised into two integers. These integers have the physical interpretation of being the wrapping number and charge of a T-dual D-particle to our D-instanton.

Indeed a wealth of information and powerful predictions - for example, we see that there are only two genus diagrams contributing to this interaction - the higher genus
diagrams have to cancel! And this has later been checked in a lot of cases.
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In front of the exponential we have an instanton measure counting the number of states for a given instanton charge m, which we find is the number of ways m can be
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Indeed a wealth of information and powerful predictions - for example, we see that there are only two genus diagrams contributing to this interaction - the higher genus
diagrams have to cancel! And this has later been checked in a lot of cases.



Lower dimensions

We would now like to do the same analysis for lower dimensions where we recall that we had the following table of groups and similar coefficients functions on G

And one can show that the coefficient functions are also Eisenstein series.



Lower dimensions

D G(R) K G(Z)

10 SL(2,R) SO(2) SL(2,7)

9 SL(2,R) x RT SO(2) SL(2,7) x Zs

8 SL(3,R) x SL(2,R) SO(3) x SO(2) SL(3,7) x SL(2,7)
7 SL(5,R) SO(5) SL(5,7)

6 Spin(5, 5; R) (Spin(5) x Spin(5))/Zs Spin(5,5; 7Z)

5 Eg(R) USp(8)/Z2 E6(Z)

4 E7(R) SU(8)/Zs E;(Z)

We would now like to do the same analysis for lower dimensions where we recall that we had the following table of groups and similar coefficients functions on G

And one can show that the coefficient functions are also Eisenstein series.



Parabolic subgroups

Y. choice of simple roots <E> generated root system

Before that, let me quickly go through some definitions to get us all on the same page.

We need to define parabolic subgroups which are specified by a choice of simple roots - a set Sigma. Let <Sigma> be the generated subroot system of these simple

roots.

And g_alpha the usual definition.

Then the lie algebra p is constructed from the Cartan subalgebra + all the positive roots together with the generated root system.
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Then the lie algebra p is constructed from the Cartan subalgebra + all the positive roots together with the generated root system.
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contains the remaining positive roots.
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Let us visualize this for SL(4) with the choice of Sigma being only the first simple root.

Then the subgroup L looks like this, with the generated root system labelled in red. And U with the remaining positive roots. P is then the product of the two.
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Then the subgroup L looks like this, with the generated root system labelled in red. And U with the remaining positive roots. P is then the product of the two.
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If we choose, here in another example, to include all simple roots but one, the parabolic subgroup is called maximal.

On the other hand, if we don’t include any at all, it becomes the Borel subgroup, also called the minimal parabolic. Each with their respective decompositions denoted
like this.
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If we choose, here in another example, to include all simple roots but one, the parabolic subgroup is called maximal.

On the other hand, if we don’t include any at all, it becomes the Borel subgroup, also called the minimal parabolic. Each with their respective decompositions denoted
like this.



Eisenstein series

Let xp : P(Z)\P(R) — C* be a multiplicative character
determined by its restriction on L and trivially extended
to all of G.

Eisenstein series for higher rank groups are then constructed from a parabolic subgroup P and a multiplicative character chi on this, which is determined by it restriction
on L and trivially extended to all of G.

The Eisenstein series are then constructed as sums over images of characters \chi on P in a similar way as before.
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Expand in different directions <—— Unipotent subgroup U
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Since we have a larger group we may also Fourier expand in several different directions, which amounts to a choice of unipotent subgroup U and such a group can be
obtained from a choice of another parabolic subgroup P.

Let psi be a multiplicative character on U where U(1) is the circle parametrized by integer charges m. Where Ealpha are the positive Chevalley generators.
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Since we have a larger group we may also Fourier expand in several different directions, which amounts to a choice of unipotent subgroup U and such a group can be
obtained from a choice of another parabolic subgroup P.

Let psi be a multiplicative character on U where U(1) is the circle parametrized by integer charges m. Where Ealpha are the positive Chevalley generators.
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The F coeff is then defined as this integral over U of the Eisenstein series and the complex conjugate of the character.
The original function is obtained by summing over Fourier modes, which we usually split into a constant term with trivial character and the remaining modes.

However, one can show that FU depends on u in a trivial way by multiplication of the character \psi(u) and since \psi is multiplicative on U this means that the above sum
over Fourier modes can only capture the abelian part of U. If U is non-abelian one has to include Fourier coefficients on the commutator subgroups of U as well.
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Fourier expansion

Study different perturbative

Choice of unipotent subgroup U <—
P group and non-perturbative effects

[Green-Miller-Vanhove]

To connect back to physics the different unipotent subgroups we can Fourier expand in allows us to study different perturbative and non-perturbative effects string
theory. Here are three important examples.

First, the string perturbation limit which we have studied before when the string coupling is small. This amounts to an expansions wrt this maximal parabolic subgroup.

Such Fourier coefficients are, however, difficult to compute which is why we turn to the adelic framework.
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spare much unnecessary thought and many useless calculations.
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So we lift our coefficient function to the adeles of the rationals
With G(A) looking like this and the maximal compact subgroup KA like this.

Using strong approximation we can then study the coefficient functions on this space instead.
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Computing adelic Fourier coefficients

[arXiv:1511.0465 88-9]

Whittaker vectors

Now turning to the computation of adelic Fourier coefficients.
In our review we have gathered and extended methods for computing Whittaker vectors. First the constant term using Langland’s constant term formula. Then unramified

Whit vec using the Casselman-Shalika formula. And this allows us to then compute generic and lastly, degenerate Whit vec.
Important to note here is that, the more degenerate a Whit vec is - the easier it actually becomes to compute. A maximally degenerate Whit vec looks like and SL(2) Whit

vecC.

In the paper sharing the title of this talk, we compute Fourier coefficients in terms of these (known) Whittaker vectors of automorphic forms in small representations.
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[Miller-Sahi]

It all started with a paper from Miller-Sahi that got us really excited. They showed that for ...

This seemed very promising for our goal. The only thing we needed now was an explicit formula for computing our Fourier coefficients, so we started working on this
using the same tools that Miller and Sahi used.
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Fu(x, v 9) = /E(X;ug)mdu P=1LU
UQ\U(A)

Namely character variety orbits

If we take an element gamma in L(Q) one can show that a Fourier coeff with translated argument gamma g equals the Fourier coeff with a conjugate character \psi

gamma.

This gives us what is called character variety orbits, which are more conveniently described by identifying psi with omega in the dual of u. This means that we only have
to compute one Fourier coeff per orbit.
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We will use a coarser description for the character variety orbits using complex orbits of the whole of G, which we will simply call nilpotent orbits.

Additionally, to each automorphic representation, one can associate a so called special nilpotent orbit. Which will give us a connection between Fourier coefficients and
representations.

Let us first study some properties of nilpotent orbits.
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For SL(n), orbits can be identified
with partitions of n

where we see here the trivial, minimal and ntm orbits corresponding to the trivial, minimal and ntm representations.
More generally, a partial ordering can be obtained from inclusion wrt Zarisky closure.

Another way of labeling is Bala-Carter label based on distinguished parabolic subalgebras.
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Automorphic representations
E(x;g9) > m+— O,

Fu(x,%;9) vanishes unless ¥ € O < O,

[Mceglin-Waldspurger, Matumoto, Ginzburg-Rallis-Soudry, Ginzburg, Gourevitch-Sahi,
Jiang-Liu-Savin, Joseph, Miller-Sahi]

Then, there’s a theorem from Matumoto, Maeglin-Waldspurger, extended by all these people which tells us that a Fourier coeff of this Eisenstein series vanishes unless
psi is in an orbit less or equal than O_pi

Meaning that automorphic forms in small automorphic representations have few non-vanishing Fourier coefficients.
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We started with studying G = SL(3) and SL(4).

Although we expect our results to hold for arbitrary simply-laced groups
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BONUS: Expressions for non-vanishing modes in the paper

More generally, we found that phi could be expanded in a sum over orbits, where ...
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We showed that a maximal parabolic F coeff in min rep = a single maximally degenerate Whittaker vector with translated argument depending on \psi

We proved this only for SL(3), and SL(4), but suspected that it holds for arbitrary simple simply laced lie groups as well.
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We proved this only for SL(3), and SL(4), but suspected that it holds for arbitrary simple simply laced lie groups as well.
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Local spherical vectors for Eg, E7, Eg

So we wanted to test the corresponding statement for E6, E7 & E8 by studying so called local spherical vectors.

The embedding of the LOCAL minimal representation in the induced representation of \psi is of multiplicity one and the unique local spherical vectors f have been
computed for several groups and subgroups U at both the archimedean and non-archimedean places using techniques from representation theory.
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does!
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And if we compare with the right hand side Whittaker vec we obtain the following expression where \psi is charged like this, matching the above spherical vectors.
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?
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Complete agreement for Eg, E7, Es in both abelian and
Heisenberg realisations

We find complete agreement for E6, E7 and E8 for both the abelian and Heisenberg realisations corresponding to different unipotent subgroups U.

This is strong evidence for that the above relation can be generalized to higher rank groups.
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Automorphic representation

[ms(hy)el(g) = w(g(L; hy)) hy € Gy
[mr®) (k)] (9) = p(9(koo; 1)) ke € K(R)
ma(X)e)(9) = Gelge™ )li=o X € Uge)
K-finiteness

dim¢ (span{gp(gk:) | k€ KA}> < 0.




Whittaker vectors

G(Q) = |J B(QuwB(Q) N®(A) =[] Na(A)

wew a>0
wa<0

Wy(xa)= Y. / x(yna)p(n)dn = " F,(x;a)

1EB(Q\G(Q) N(Q)\N(a) weCy

Fu(xia) = [ x(wna)i(n) dn

N®)(A)

Fo(x;a) = H Fw,p(Xp§ ap) Fw,p(Xp; ap) = /Xp(wnap)wp(n) dn
p<oo Aﬂuﬂ(@p)




Whittaker models

Imd§5 e = { Wy : G(A) = C| Wy(ng) = p(n)Wy(g), n € N(4)}.




