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Why study Fourier coefficients of
modular/automorphic forms?

e Contain arithmetic information:
- The number of integer solutions to n = x12 + x22 + x32 + xf

IS given by the n-th Fourier coefficient of a modular form [Jacobi 1829]

- Counting rational points of elliptic curves by Fourier coefficient of cusp forms
(modularity theorem) [Wiles, Taylor, Diamond, Conrad, Breuil 95-01]

- Dimensions of representations of finite sporadic groups in a phenomenon
called Moonshine [Conway—-Norton 79, Borcherds 92]
e |anglands program:

- Galois representations «— automorphic representations with equality of
L-functions which are related to Fourier coefficients of automorphic forms.

e Physics:

- Count the number of quantum states of instantons and black holes.



Modular forms

Function f : H — C on the upper half plane H ={z € C:Imz > 0}

az + b
cz + d

a b
SLo : = € ol 2) =
Satisfying: L2(R) GH 7 (C d) SLay(R) - (2)

o f(v(2)) = (cz+d)" f(2) forall v € SLy(Z) for some weight k € N
« Holomorphic  9f =0

e Polynomial growth

Typical example: holomorphic Eisenstein series

Grlz) = Z (cz : d)”

(c,al)EZ2
(¢,d)#(0,0)




From modular forms to automorphic forms

Modular forms ~—~___, Automorphic forms

B, 8
SL> G Bo S0,
GanSLn
H={2z€C:Imz>0}=SLy(R)/SO2(R)
5y — g(z) —— gSO- (R) SO (R) = Stab(z)
v(2) = v9(7)
: (VY =z (1= vy O N .
Representatives g = ( 0 1/\@) = (O 1)( 0 1/\/g> g(i) = = + iy
— maximal compact subgroup ]
SL(R)/SO5(R) - G(R)/Kg

More generally, a function ¢ : G(R) — C

f(z) - ©(g)




From modular forms to automorphic forms

Modular transformation factor with a weight is difficult to generalize
f(¥(2)) = (cz+d)* f(2) forall v € SLy(Z)
Instead we will require automorphic invariance

p(vg9) = ¢lg) forally e G(Z)

This is not such a big restriction as it seems if we work with G(R) instead of G(R) /K.

Modular form f : SLa(R)/SO2(R) — C can be lifted to SLs(Z)-invariant
function ¢ : SLy(R) — C that transforms under SO5(R)

o(g) = (ci +d) " f(g(i)) g=(21%) €SLa(R)
Then ¢(v9) = ¢(9) 7 € SLy(Z)

p(g( 938 sinb) = ™ 0p(g) (o8, sin0) € SO,(R)



Automorphic forms

Smooth function ¢ : G(R) — C satisfying:
« Automorphic invariant: o(vg) = ¢(g) for all v € G(Z).

(some)

 Annihilated by polynomials in G-invariant differential operators.

E.g. eigenfunction to Casimir operator or Laplacian. Compare df = 0

» K-finiteness: span{g — ¢(gk) : k € K} is finite dimensional.

Often right-invariant under K (called spherical) - Maximal compact subgroup.

« Polynomial growth



SL, Eisenstein series
Typical example of automorphic form on ‘H = SLy(R)/ SO5(R)

Non-holomorphic Eisenstein series * %
B = {<O *) < SL2}
1 (Im 2)* s
. (c,d)€Z? YEB(Z)\ SLs(2)
ged(c,d)=1

Manifestly SLy(Z)-invariant

Compare with the holomorphic Eisenstein series, a modular form of weight &

1 0G. =0
Gr(2) = ) ’f
d)F A—s(s—INE, =0 A =4y(d? + 2
(c.Dez? (cz 4 d) ( (s —1)) y(0; +0;)
(c,d)#(0,0)

E, invariant under SLy(Z) while G, transforms with weight &.



SL, Eisenstein series
Typical example of automorphic form on ‘H = SLy(R)/ SO5(R)

Non-holomorphic Eisenstein series * %
B = {<O *) < SL2}
1 (Im 2)* s
. (c,d)€Z? YEB(Z)\ SLs(2)

ged(e,d)=1 Manifestly SLy(Z)-invariant

Character on B

To be able to generalize to other groups: Let xs(g) = Im(g(4))".

G=SLy Fy(g) = Z Xs(79) 9:<(1) f) (\{)? 1/?/@)]*C Z;;;OJ;ZIZ)

vEB(Z)\ SL2(Z)

G=5SL. FEz(g) = Z xz(79) B upper triangular
§e C"v€B(Z)\ SLn (Z)



Fourier coefficients (SLy)

Forvy = (}1) € SLa(Z) we have that v(z) = z + 1.
SLo(Z)-invariance = FEs(z+ 1) = E4(z)  Periodicin 2 = Re(2)

Fourier series
Note: not requiring holomorphicity which

: L 2mimx
Ey(x +iy) = Z am(y)e gives a series in ¢ = e?™**
meZ



Fourier coefficients (SLy)

Forvy = (}1) € SLa(Z) we have that v(z) = z + 1.
SLo(Z)-invariance = E (2 + 1) = Es(z)  Periodic in z = Re(2)

Fourier series
Es(aj - @y) — Z am(y)e%rimx: Z / ES(ZIZ‘/ 4o+ iy)e—Qwima;’dx/

meZ mez Z\R
- 1 (Im 2)*
. —2mimx —
only) = [ Bula'+igle e de Ea(z) = ( ; o 1 P
c,d)c
ZAR ged(c,d)=1

Eigenequation A — s(s — 1)) Es = 0 and growth condition imply

Ey(z +iy) = Coy® + Chy' —* +y'/? Y CruKy_12(27|mly)e’ ™

m=0
Key arithmetic information we want to use in applications is hidden in the constants.



Fourier coetficients (Hz)

Consider a function ¢ on the Heisenberg group

1l x z

Hs(R) = N(R) = {( 1%) :x,y,zGR}

What does it mean to be periodic”?

v € N(Z) g € N(R)

How to Fourier expand it?



Fourier coetficients (Hz)

1 y+b

( 1 z+a z—|—c—|—ay)
1

Simply expanding ¢ in x, y and z using the Fourier modes
g2 (mz+ny+kz) does not work!

‘ (x%x+a
Invariant under ¢ y — y+b  while ¢ is not.

\z%z+c+ay

Need to Fourier expand with respect to abelian unipotent subgroups.
Can expand in steps along commutator subgroups, but easier to work backwards.



Fourier coetficients (Hz)

Start with the (abelian) center: Z(R) = {(1 1 fj

o(9) =Y _Filg) = > Funlg)+D_ Frlg)

keZ m,nez k+#0

1

)2 €R}

periodic in x and y for £k =0

Fi (g) _ / S0(( 1 , ? >g)€—2mkz’ ds’ depending on =z and y



Fourier coetficients (Hz)

me(g) — /SO( ( 1 901 ;1, >g)6—27ri(mg;/—|—ny’) da?’dy/dz’
Group theory notation

/Sﬁ(ug) Vmn(u) Tdu =W, . Whittaker coefficient
N@\N® L — Character

D(u') = Yu)b(!) () =1 for u € N(Z) N = {(1 i

))

u is unipotent if (1 —u)® = 0 for some N
logu = — ]kV:_ll %(1 —u)k

Fu.plel(g) :/%p(ug)w(u)_ldu e0. U={("1])]

U(Z)\U(R)

=% %

Different unipotent subgroups:



Parabolic subgroups

For GL,, and SL,, a standard parabolic subgroup P can be
visualized by the following blocks.

Levi Unipotent

P= L U




Parabolic subgroups

P= L U

Minimal parabolic (Borel) B
Maximal U = N. Small L = torus.

|4,

Other parabolic P
Smaller U. Larger L.

Strategy:

As

| 4%

Whittaker coefficients
Much Is known

Computation for Eisenstein series reviewed in
[Fleig—-HG—Kleinschmidt—Persson 18]

F

Fourier coefficients difficult
to compute directly

l— including the automorphic form o iteself

When possible, write the latter (F) in terms of the former (V).


http://www.cambridge.org/core_title/gb/502216

Parabolic subgroups
14%

Minimal parabolic (Borel) B Ll:|:|:|:|: Whittaker coefficients
Much is known

Maximal U = N. Small L. = torus.

Computation for Eisenstein series reviewed in
[Fleig—HG—-Kleinschmidt—Persson 18]

Other parabolic P s F
As Fourier coefficients difficult

to compute directly

Smaller U. Larger L.

Strategy: — including the automorphic form ¢ iteself

When possible, write the latter (F) in terms of the former (V).

The other direction is trivial (by integration), but this
direction is difficult (requiring successive Fourier expansions)


http://www.cambridge.org/core_title/gb/502216

Strategy example

Parabolic Fourier coefficient in terms of Whittaker coefficients

% ok ok 1 1 x2 x3 .
Let @ = SLy, U :{< é?8>}a”d ‘”_1((86 9 8)) = fmim )
001 00 0 1

mi, Mo, ms € 7
1 1 I2
Foulollo) = [o((§3
00 O

(Z\R)”

(esleslan) o

Hooéﬁ
N—
N}
N—
A
\V)
3,
)
_—I—
a3
N
B S
N
=t
a3
m W
s
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=)
w
=
T
O
-
-
O
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Q
n
n
(-
=
QD)
E
|
—

J Goal: write as sums of

r1T o I3
g4 Iy ‘g eQﬂ@(ﬂllxl—Fﬂl4$4—kﬂ16x6)(16a;

1 g

0 1

Wansmmale1(0) = [ o((

(Z\R)®

s NesNel
OO



Strategy example

Parabolic Fourier coefficient in terms of Whittaker coefficients

1 % % x 1 1 2 x3 .
Let G =SL,, U = {(8 (1) (i) 8)} and ¢—1(<8 (1) (i) 8 )) — 2mi(mizi+maera+mars)
0001 00 0 1
miy, M2, M3 € Z
1 1 o I3 ]
Fuplellg) = /90((8 ;Y0 )g) erilTitmatatmars) 13, For now, assume my =1
00 0 1

By conjugating the integration variable using
automorphic invariance one can change the character.

Step 1: Conjugation

1 0 00
Let v = (8 s 1 8) e SL4(Z). Automorphic invariance gives: ¢(g') = ¢(vog').
0 —ms3 01

1 1 o2 I3 1 1 o2 I3 1 1 5131—|—m2332—|—m3333 o I3
01 0 O — 01 0 O — — 1

90( 00 1 0 g)—s&(% 00 1 0 | *yog)—w( 0 0 7 0 709)
00 O 1 OO0 O 1 0 0 0 1



Strategy example

1:131 9
Fosldlo) = [o((§7 5
00 O

(Z\R)®

Hooéj
N
N
N—
Q)
N
3.
B
_+
.
.M
Ry
N
:-I—
a3
mWw
s
<
ol
w
=

By conjugating the integration variable using
automorphic invariance one can change the character.

Step 1: Conjugation

1 0 00
Let vo = (8 IR 8) e SL4(Z). Automorphic invariance gives: ¢(g') = ¢(vog').
0 —ms3 01
1 r1 o2 I3 1 r1 2 I3 1 1 a:l—l—mgazg—l—mga:g o I3
A(5378)9) =e(a0(33 T T wtng) =o((57 T T )os)
00 O 1 O 0 O 1 0 0 0O 1

Thus, with a shift in the z; integration variable

1 o I3

1 .
Fuulel(g) = /¢(<8 5 Y 8)709)62m1 A’
OO0 O 1

Can then further expand
along next row...



Strategy example

By conjugating the integration variable using
automorphic invariance one can change the character.

Step 1: Conjugation

1 0 00
Let vo = (8 IR 8) e SL4(Z). Automorphic invariance gives: ¢(g') = ¢(Yog').
0 —ms3 01

1 r1 o I3 1 r1 o I3 1 1 x1+m2:1:2+m3:133 o I3
01 0 O — O1 0 O — — 1

90( 00 1 0 g)—s&(fm 00 1 0 ) 709)—90( 0 0 70 %g)
00 O 1 00 O 1 0 0 0 1

Thus, with a shift in the x; integration variable

Can then further expand
along next row...

1 .
Fu,plel(g) = / 90(<8 § 9 8)%9)62““’1 3z
0O 0 0 1

To do the same with any other my # 0 would need to conjugate with

1 0 00
O 1 00
o = (0 — 22 o) c SL4(Q). But automorphic invariance only for SL4(Z).

0—-—-301
mi



Tool: Adelic lift

Adeles A D R
(defined in next slide) ‘
Compute

Automorphic forms on G(A) »  Q\A-Fourier coefficients

Invariant under G(Q)
A

Adelic lift Restrict

Automorphic forms on G(R) Z\R-Fourier coefficients
Invariant under G(Z)

Also highlights Eulerian and representation theoretical properties.

For details see [Fleig—HG—-Kleinschmidt—Persson 18, §2, §6]


http://www.cambridge.org/core_title/gb/502216

The ring of adeles

Completion of
Cauchy sequences

@ > R @ ’@p

Standard norm | - | p-adic norm |- |

For a prime p and = € Q prime factorized as « = pi* - - - pF» we
define the p-adic norm

z p;ki It p = p; fOr any ¢
Qj p—
P 1 otherwise

Ring of adeles: A =R x H/ Qp

prime p

Q embeds diagonally in A: Q> q— (q;q,q,...) € A.
Q is discrete in A and Q\A is compact.



Dictionary

Fourier expansion on Z\R —— Fourier expansion on Q\A

Additive character on A trivial on Q _l

=% Z \/R Fa + €)e2mime ge fz) = n%@ é fx + €)e(me) de
G(R) — G =GR x [] @)
prime p
U(Z)\U(R) — U(Q\U(A)
G(Z)-invariant — G(Q)-invariant

For details see [Fleig—HG—-Kleinschmidt—Persson 18, §2, §6]


http://www.cambridge.org/core_title/gb/502216

Strategy example (adelic)

1 % % % 1 z1 22 x3
Let G =SLy, U = {(8 10 8)} and w—l((g 100 )) = e(miz + maxy + mars)
0001 OO0 O 1
mi, Mo, M3 € Q
1 xy z3 x3 ; my # 0
Foulollo) = [o((§3 9 )a)etmins + maza + maza) s
O 0 O 1
(Q\A)°
Using the same steps as before we can show:
rE SL4(Q)

A~

Fuuplellg) = Y > Wenime [01(1709)

my4,Me EQ 761?4

Maximal parabolic , L
, o Translated Whittaker coefficients
Fourier coefficient

Compare with [Piatetski-Shapiro 79, Shalika 74] for cusp form.

Simplifies for small automorphic representations.



Automorphic representations

Let A denote the space of automorphic forms on G(A).

An automorphic representation is an irreducible component of A under a
specific “G(A)-action”.

Can characterize automorphic representations using nilpotent orbits

[Bump 09, Fleig-HG-Kleinschmidt-Persson 18, §5]


https://doi.org/10.1017/CBO9780511609572
http://www.cambridge.org/core_title/gb/502216

Nilpotent orbits

For X € g(Q) a nilpotent element we define the nilpotent orbit
O={9gXg~" :9€G(C)}

SLg
For classical groups (SL,,, SO,,, Sp,,) these orbits are ©
parametrized by partitions of n.
(51)
(42)
Nilpotent orbits have a partial ordering which, for (411) (33)
classical groups, is equivalent to the partial ordering of (321)
partitions. i i (3111) (222)
ALy An) S (o) = Y M< Y piforl<k<n Owim Q) (2211)
=1 =1 Omin (21111)

Otriv (O (111111)

[Collingwood-McGovern 17]



Nilpotent orbits

The connection between nilpotent orbits and automorphic
representations goes via Fourier coefficients

Character 1p on U(A) —— Nilpotent element y € g(Q)
vy (u) =e((y,logu)) (-, -) Killing form

Fuu,0l(9) = Froy—1plel(vg)  rec@
"rUﬂﬂy 90 =0 «— ‘F’yU’y—l,w 1 [90] —

YYY




Automorphic representations
and nilpotent orbits

An automorphic representation = is characterized by a set of
nilpotent orbits WF(r) called its wave-front set.

|f Oy 7 WF(W) then ny% [gp] =0 for ¢ € m [Gomez-Gourevitch-Sahi 17]

(Similar local statements by Matumoto and Moeeglin—Waldspurger)

Minimal automorphic representation:

WF (mmin) contains O, but no larger orbit.

Next-to-minimal automorphic representation:

WF (mntm ) contains Oynm but no larger orbit.



Automorphic representations
and nilpotent orbits

An automorphic representation = is characterized by a set of
nilpotent orbits WF(r) called its wave-front set.

|f Oy 7 WF(W) then ij% [gp] =0 for ¢ € m [Gomez-Gourevitch-Sahi 17]

Small automorphic representations

!

Few non-vanishing Fourier coefticients

Defining property:




Small automorphic
representations

Defining property:

Few non-vanishing Fourier coefficients

SL, example: Whittaker coefficients specified by character

1l 1 *x =%

0O 1 x2 * _
wml,mg,mg((o 0 1 x?))) = e(myx1 + maoxo + m3xs3)
00 0 1

Maximally degenerate

Minimal representation: only W with characters ., 0.0, %0.m+.0s ¥0,0,ms SUrvive.

Next-to-minimal representation: also ¥y, 0,.ms SUrvive.



Realizations

(used for example in string theory applications)

Eg(g) — Z Xg(’yg) SeC" +—= \N=2s1A1+...25.A,

VEB(ZN\G(2Z) xs(9) = xs(nak) = a*

For SL,,, (n > 3):

Eso...0)(g) isina minimal automorphic representation.

F,s,...0)(g) is in a next-to-minimal automorphic representation.

For Eg, B7, By
E3/2.0.....0)(g) is in a minimal automorphic representation.

E5/2.0,...,0)(g) is in a next-to-minimal automorphic representation.

[Fleig—-HG-Kleinschmidt—Persson 18, Table 6.2]


http://www.cambridge.org/core_title/gb/502216

Reduction principle

When possible, write difficult Fourier coefficient in terms of Whittaker coefficients.
F w

Theorem I [Gourevitch—-HG-Kleinschmidt—Persson—-Sahi 22].

We show that an automorphic form in a minimal or next-to- 0—O0—"0~0—70
minimal automorphic representation of a simply-laced group, O_O_O'{)_O<Z
as well as their Fourier coefficients, can be expressed in

o—oO

terms of Whittaker coefficients and provide an algorithm. o—© o—©

In the general case™, we give the "largest” coefficients 0—oO i O—O0—=o0
that would replace Whittaker coefficients in the above T

statement: so called Levi-distinguished coefficients. O—O0—O0—0—0—0—=0

A precise statement of the algorithm is made using Whittaker pairs which are elements
of the Lie algebra describing the Fourier coefficient's unipotent subgroup and character

*Any number field, any central extension of reductive group, any representation.



Explicit formulas

Theorem II |Gourevitch—-HG-Kleinschmidt—Persson-Sahi 20].

Formulas for expressing maximal parabolic Fourier coefficients,
and ¢ itself, in terms of Whittaker coefficients for minimal and
next-to-minimal representations of simply-laced groups.

Example G = 505 5:
@ next-to-minimal, U,, analogous to first row
Character ¢ = ¢, with y € g* (Q) in a minimal orbit.

Fvo, wlel@) =Wylel@) +> > Y Wy lol(vg)

I 1=3 v€lliyregX | (Q)
Maximally degenerate Certain coset representatives
in G(Q) specified in paper.



String theory applications

The interaction (scattering) of two gravitons is described by a probability
amplitude depending on their incoming and outgoing momenta.

\
The graviton is a particle that —
mediates gravity similar to how a
hoton mediates electromagnetism.

In string theory this is pictured as a string sweeping out a Riemann surface

over time
4’\/2
PR



String theory applications

The interaction (scattering) of two gravitons is described by a probability
amplitude depending on their incoming and outgoing momenta.

\
The graviton is a particle that —
mediates gravity similar to how a
hoton mediates electromagnetism.

In string theory this is pictured as a string sweeping out a Riemann surface
over time

> Ny <+

\ ’ \ \\ 7
\ 4 A / L
\\

To obtain the full amplitude one has to integrate over all geometries.



String theory applications

In string theory this is pictured as a string sweeping out a Riemann surface

over time

*\\ 7 7
l/ \/\ w\\ I /\/W\\

N (+ > <+

\ N\
\ \ 7 / \\ /
~ L \\ _

To obtain the full amplitude one has to integrate over all geometries.

In string theory space-time X is a 10-dimensional manifold, but to

obtain physics in D dimensions one can for example let
X =RP x TP where T? is a d-dimensional torus.

Such a theory is specified by parameters in ,
G(R)/Kr where G = E;,1 obtained by restricting to

the d + 1 first nodes of the Dynkin diagram: ~ i

O \J N

1 3 4

Oo—0O0—~CO—-—-0
In particular, for D =10, G = SLs 5 6 7 8



String theory applications

In string theory space-time X is a 10-dimensional manifold, but to

obtain physics in D dimensions one can for example let
X =RP x TP where T? is a d-dimensional torus.

Such a theory is specified by parameters in ,
G(R)/Kgr where G = E; ., obtained by restricting to

the d + 1 first nodes of the Dynkin diagram: i

N

4

)
()
3

OOO—O
5 6 8

The scattering amplitude can be Taylor expanded with respect to the
iInverse string tension where higher order terms correspond to guantum

corrections and the coefficients are functions G(R)/Kr — C.

U-duality = G(Z)-invariance automorphic forms

supersymmetry — small automorphic representations



String theory applications

The scattering amplitude can be Taylor expanded with respect to the
iInverse string tension where higher order terms correspond to quantum
corrections and the coefficients are functions G(R)/Kr — C.

U-duality = G(Z)-invariance automorphic forms

supersymmetry — small automorphic representations

In fact, the first and second order quantum corrections are Eisenstein
series In minimal and next-to-minimal representations.

Their Fourier coefficients correspond to different kinds of contributions to

the scattering amplitude.

. s —s TIMIT D =10
ES(CU e f[,y) — Coy —+ Céyl + y1/2 Z CmKs—l/2(2W|m’y)62 s — 3/2
§ m=£0
3/\( > ¢ T— iInstanton contributions



String theory applications

Their Fourier coefficients correspond to different kinds of contributions to
the scattering amplitude.

. S S TIMXI D =10
Ey(z +iy) = Coy® + Coy'~* + ¢/ ;C’mKsl/2(27T|m’y)€2 s =3/2
A NS m
7= ( o= T— instanton contributions
N —
only these can be computed independently only known approximately from string theory
from string perturbation theory but is here determined by automorphic forms
O o Zdz m 0 sums over the number of qguantum

dlm states for an instanton of charge m

|[Green—Gutperle 97]

The arithmetic (p-adic) part of the Fourier coefficients contain information
about quantum states for instantons (and black holes).




Thank you!

Slides will be made available at

https://hgustafsson.se
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