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Joint work with Ben Brubaker, Valentin Buciumas and Daniel Bump

Vertex operators, solvable lattice models and metaplectic Whittaker functions
Communications in Mathematical Physics 380 (Dec, 2020), 535-579

Colored five-vertex models and Demazure atoms
Journal of Combinatorial Theory, Series A 178 (Feb, 2021)

Colored vertex models and Ilwahori Whittaker functions
arXiv:1906.04140

Metaplectic lwahori Whittaker functions and supersymmetric lattice models
arXiv:2012.15778

lwahori-metaplectic duality
arXiv:2112.14670
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Schur polynomials

Let A be a partition of r padded with zeroes to length r. We define the
Schur polynomial sy : C" — C by

(z) det(z,""");;
S — ,
A det(Zz-pJ )z’j

where z = (z1,...,z-)and p=(r—1,r—2,...,1,0).

Combinatorial description using Semi-Standard Young Tableaux of shape A

A=(3,1,1) Young diagram




Schur polynomials

Combinatorial description using Semi-Standard Young Tableaux of shape A

A= (3,1,1) Young diagram
RERERE B
Young tableau T = wt(T) = (2,2,0,0,1)
2
D

SA(Z) _ Z Zwt(T)

TeSSYT(N)



Schur polynomials

Combinatorial description using Semi-Standard Young Tableaux of shape A

sx(z) = Z 2"

TESSYT(N)

Basis of symmetric polynomials of degree r = > . wt(1');

sx(1) = [SSYT(\)]



Lattice paths

SSYT +— south-east moving lattice paths

(certain)
4 3 2

1 0

T TOWS

Let A(D(T") be the shape of T after removing labels larger than i

ACHT) =(2,1,0) A®)(T) = shape (

) = (1,1) AY(T) = shape (

1

) = (1)



173 Lattice paths
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Let A(D(T") be the shape of T after removing labels larger than i

ACHT) =(2,1,0) A®)(T) = shape (

1

5 ) = (1,1) AY(T) = shape (

1

)

= (1)

We add p") = (r — 1,7 — 2,...,1,0) to each shape to get something
called a Gelfand-Tsetlin pattern:

>\(3)(

)\(1)(

T)+ p®
A@(T) 4 p@
T)+ p™ 1



173 Lattice paths
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Let A(D(T") be the shape of T after removing labels larger than i

ACHT) =(2,1,0) A®)(T) = shape (

We add p") = (r — 1,7 — 2,...,1,0) to each shape to get something

1

5 ) = (1,1) AY(T) = shape (

called a Gelfand-Tsetlin pattern:

1

)

= (1)

ABH(TY + p3) 4 2 0
() +p@ =0 () (O
AD(T) 4 p™) 1




173 Lattice paths

state s ——
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Let A(D(T") be the shape of T after removing labels larger than i

ACHT) =(2,1,0) A®)(T) = shape (

1

5 ) = (1,1) AY(T) = shape (

1

)

= (1)

We add p") = (r — 1,7 — 2,...,1,0) to each shape to get something
called a Gelfand-Tsetlin pattern:

AB)(TY) + p3) 4 2
AH(TY + p2) 3 = 2 1
AT 4+ pb) @



»_[1]3 Lattice paths .,

state s ——» *2

<3

Five different vertex configurations:

SSYT +— lattice paths using these vertex configurations
shape A filled in top boundary edges at columns A + p

Goal: capture z%*(T) using lattice model data

wt(1") counts the number of filled in left-edges in each row




173 Lattice paths

Five different vertex configurations:

state s ——

21

<2

<3

Goal: capture z%*(T) using lattice model data

vertex

Partition function Z(\,z) := Z B(s) = zPs\(woz) = z”s)(z)

s with top A+p

wo(z1, 22, - - -,

Boltzmann weight 3(s) := ]| vertex weights =2’ - (woz

)Wt(T)

..,22,21)



Why lattice models?

Easy to write programs to compute partition functions (symbolically)
Powerful toolbox statistical mechanics to manipulate lattice models

New ways to prove identities (e.g. Cauchy identities, functional eq's)

A bridge for building new connections between widely different
mathematical objects



Cauchy identity

> aa®)sy(y) =] @ +) Macdonald 1992 (0.11"]
A i=1j=1
A = complement of 1/ = conjugate of u
/_?//n\
)\ — 3\ — >\/ p—




Cauchy identity

U

U




Cauchy identity

1 2 — 2 (1 —v)z 1

N S A

These new weights introduce a slight deformation of the partition function

Z(Az) = sz(l —v2)sx(z)

1<)

[Brubaker—-Bump—Friedberg 2009]

If v = —1 then a flip preserves the Boltzmann weight of the state.



Y1

Y2

Cauchy identity

Z=11i+2) 1w +v) 1] @+ v)

i<j i<j i=17=1

[Bump-McNamara—Nakasuiji 2014]
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Y2

Cauchy identity

~

fligh

C

_J

Z:H(in—Fﬂ?j Hyz"‘yj HHajZ_l_yJ
1<J

1=17=1

bot
Z)\

[Bump—I\/IcNamara—NakaSUJ| 2014]



Cauchy identity

Y1 ( N
23" = [ [prTs)s5 (v)
Y2 \ )
2.
o - ~
Zbot MSA(X)
= |- 3 Z
— H(x 373) H(y yj) H H(xz + yj) _ Z Z;OD ZSO’[
v [ 1=1j=1 \
> sy ) =] 1@ +y))
A i=1j=1

[Bump-McNamara-Nakasuiji 2014]



Colored lattice paths
Ordered palette of r colors: R > B > G

4 3 2 1 0 4 3 2 1 0 4 3 2
R B G R

New right boundary data: permutation w € S, of (R, B, G)

Have constructed vertex configuration weights such that the
partition function is refined to:

uncolored Z(\;z) = Z Z (N, w;z)  colored

wWES,

Concept based on [Borodin—\Wheeler 201 8]
[Brubaker—Buciumas-Bump—-HG JCTA 2021 and arXiv:1906.04140]




Colored lattice paths

zPs\(z) = Z(\;z) = Z Z (A, w;z)

wES,

o ©
| 00|06 ©

zi ifc>d
O if c < d

Theorem: [Brubaker-Buciumas-Bump-HG JCTA 2021]

Z (A, w;z) = Demazure atoms

ﬁZZ)\wz

wly

Demazure atoms decompose Demazure characters, also known as key polynomials,

(of which Schur polynomials are a specific example) into their smallest non-
Intersecting pieces.




Colored lattice paths

® ©
| 00|06 ©

zi ifc>d
O if c < d

Theorem: [Brubaker-Buciumas-Bump-HG JCTA 2021]

Z (A, w;z) = Demazure atoms S Z0wwiz
I WY
Demazure atoms decompose Demazure characters, also known as key polynomials,

(of which Schur polynomials are a specific example) into their smallest non-
Intersecting pieces.

New algorithms for computing so-called Lascoux—Schutzenberger key tableaux
(related to Kashiwara crystals of Young tableaux).



Yang-Baxter equations

The idea of the proof is to obtain functional equations for the partition
functions with respect to length of the permutation w.

Satisfies a Yang—Baxter equation +— solvable lattice model

Introduce a new type of vertices, called R-vertices.

Z2

>< )
Z1 )




Yang-Baxter equations

4 3 2 0

29 <1

21 >< z2

<3 <3

% < o (] )
z1 Ife<d z1 — 29 Ife>d
Z9 Z9 Z1 . , 21 — <2

zo Ife>d 0 if c < d
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Yang-Baxter equations

X

-

25

sum over internal edge configurations
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Denote uncolored edge by @




Yang-Baxter equations

Train argument
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Yang-Baxter equations

( ® \ ([ © )
2@ O—4@= SO @ @—?????—@
z ® =7 ® Z(\w;z) = g
2@ OO 2@ =
\ o ) \ o ) OO0

Train argument

Q9000 99099

Z (N, w; z)

gz+:@9????
V58358 T 58358 Yy ey

We can solve for Z(\, syw; s1z) in terms of Z(A, w; s1z) and Z(\, w; z)

210 ®
2O = B

=
i
@ @

P

?

Z(A,w; $12)

7

Z(A, s1w; $12)

©

Recursion relation in terms of Demazure (divided difference) operators



Yang-Baxter equations

Recursion relation in terms of Demazure (divided difference) operators

D; Z(\, w: if s;w > f(z) — 2= f(siz)
Z()\,Siw;Z) _ : ( w Z) | S; W w sz<Z) _ z—i—;.
D" Z(\w;z) if s;w <w L=

Thus, writing any w as a reduced word s;, s;, - - - 54, we get that

Z()\,w;z) — DilDig T Dzk Z()\, 1; Z)

> | 0O | O




Representation theory

(v # 0)



Representation theory

Disclaimer: there is already some representation theory for v = 0.

The Schur polynomial sy is the character of a highest weight
representation (my, Vi) of GL,.(C).

sx(z) :trvA(ﬂA(<Zl )))

My foremost interest is not in complex groups, but in groups defined over
other fields of interest in number theory. E.g. GL,.(Q,)

g D g R

Number theory —> Representation theory
- J \_ W,




Number theory

A powerful way of studying prime numbers is using p-adic numbers
which one can think of as power series in a prime p.

Alternatively,

3, 3.1, 3.14, 3.1415, ... T
Completion of

Cauchy sequences
@ > R Q > Qp

Standard norm | - | p-adic norm |- |

The “closeness” of two p-adic numbers is measured by how many
powers of p their difference is divisible by.

states that these are the only possible
(non-trivial) absolute values and completions of Q.

(Can even do p-adic calculus)



Representation theory

GL,(Q,) is the group of invertible » x » matrices with elements in Q,.
SL,, SOy, E¢, E7, Eg

We will mainly consider representations consisting of functions
f: GL.(Q,) — C and the right-regular action n(g)f : h — f(hg) for

g,h € GL,.(Q,).

In particular, the principal series representation w, forz € (C*)".

Crucial tool for studying representations:  Whittaker functions

I analogy I

periodic functions:  Fourier series basis

General idea: embed the former into the space of the latter and
determine the support of the image



Results

The previously constructed partition functions with v = 1/p are
Whittaker functions for

L attice model Whittaker function for

uncolored spherical vectors w(g)f = f for g € GL(Zy)
[Brubaker—-Bump—Friedberg 2009, Tokuyama 1988]

colored » |[wahori vectors =(g)f = f for g € GL,(Z,) N {lower triang. mod p}
\ [Brubaker—Buciumas—-Bump-HG arXiv:1906.04140]
[Brubaker—Buciumas-Bump-HG arXiv:2112.14670]
chargead metaplectic spherical vectors metaplectic n-cover of GL,.(Q,)

[Brubaker—Bump—Chinta—Friedberg-Gunnells 2012,
Brubaker—Buciumas—-Bump 2019]



Results

The previously constructed partition functions with v = 1/p are
Whittaker functions for

L attice model Whittaker function for

uncolored spherical vectors w(g)f = f for g € GL(Zy)
[Brubaker—-Bump—Friedberg 2009, Tokuyama 1988]

colored » |[wahori vectors =(g)f = f for g € GL,(Z,) N {lower triang. mod p}
\ [Brubaker—Buciumas—-Bump-HG arXiv:1906.04140]
[Brubaker—Buciumas-Bump-HG arXiv:2112.14670]
chargead metaplectic spherical vectors metaplectic n-cover of GL,.(Q,)

[Brubaker—Bump—Chinta—Friedberg-Gunnells 2012,
Brubaker—Buciumas—-Bump 2019]

colored + metaplectic lwahori vectors
supercolored  [Brubaker-Buciumas-Bump-HG arXiv:2012.15778]



Results

The previously constructed partition functions with v = 1/p are
Whittaker functions for

L attice model

Whittaker function for

uncolored

colored

charged

colored +
supercolored

spherical vectors
Schur polynomials Hall-Littlewood polynomials

l\wahori vectors \ /

Non-symmetric Macdonald polynomials (limits of)

Parahoric: Macdonald pol. with prescribed symmetry

metaplectic spherical vectors
p-parts of Weyl group multiple Dirichlet series

metaplectic lwahori vectors



Metaplectic version

roolors  (®)(©®  nsupercolors {01z
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Quantum groups

Solutions to the Yang-Baxter equations arise from quantum groups. These are
g-deformations of universal enveloping algebras U(g) of Lie algebras g.

metaplectic
GL,(F) n-cover of GL,.(F)
spherical U, (gl(1]1)) U, (al(1|n))
lwahori U, (gl(r|1)) U, (gl(r|n))

If the quantum group modules are known for the horizontal and vertical edge
configurations then one can compute the Boltzmann weights and the R-matrix
directly from the quantum group.

They then automatically satisfy the Yang-Baxter equations.

The module for the vertical edges is not known for any of the lattice models in
this talk. The weights had to be constructed, and the Yang-Baxter equations
had to be checked by hand.



Thank you!
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Special polynomials

TABLE 2. Relations between different Whittaker functions and associated special polynomials.

Whittaker function Special polynomial
Spherical Whittaker function Schur polynomial
> wew dw(z; @) = Jlaea+(1 —vz7%)s2(2)
Li’s Whittaker function Hall-Littlewood polynomial
Swew (—0) Moy (zsw™r) = 2 PPy ,(z,07h)
Iwahori Whittaker function Non-symmetric Macdonald polynomial
o (Z; w_)\) — (_U)£<w>z_pw0Ewow()\—l—p) (Z; 0, U)
Parahoric Whittaker function Macdonald polynomial with prescribed symmetry
v] (257 = 208\ (20,07l

References for each row is found in Table 1 in the same paper: arXiv:1906.04140



Representation theory
deluxe



Setup

@p ZP
F' non-archimedean local field, o ring of integers
pLy, p

p maximal ideal with uniformizer @ € p

—1

reciprocal of the residue field cardinality 5 = |o/p\_1

While the following representation-theory-results hold for any split reductive group
G, we will restrict to G = GL,. for which we can compare with the lattice model just

described.

Let G = GL,, G = G(F). Standard maximal split torus T.

Details in [arXiv:1906.04140]



Principal series representation

Character 1, of T(F) trivial on T(o) parametrized by z € (C*)"
A1l
w w>\2
T(F)/T(o) representatives: w? = _ AeZ"
N

7. (@*T(0)) = z* =[], 2. Inflated to Borel subgroup B = B(F).
Upper triangular 1

Principal series representation I(z) = Ind%(6'/27,)
Modular quasicharacter J



Basis of Iwahori fixed vectors

lwahori subgroup J C G(o) of lower triangular matrices mod p

0 = 2y
p:pzp

Basis of lwahori fixed vectors in I(z) {®Z%(g9) }wew=s,

QO QQ
QO QOvT
CQUTYT
OCTCTTT

Bruhat decomposition + Iwahori factorization: G = | | BwJ
weWw

6121,(b) ifw =w

| be Bw eW keld
0 otherwise

PZ (bw'k) = {



Basis of Iwahori fixed vectors

Spherical vector right-invariant under K = G(o)

¢z =) @7

weW

T— Maximal compact

Vectors invariant under parahoric subgroup Z D0

Parabolic (block-triangular) mod p

oppp 0000
o0pp 0000
oo0o0p 0000
0000 0000

lwahori C parahoric C spherical

QO QoQ
QO Qo
oo TT
QT YT



Whittaker functions

N_=N_(F)
B_ opposite Borel (lower triangular), unipotent radical N_

Character y : FF — C* trivial on o but no larger fractional ideal.

Fix character ¢ : N_ — C* such that ¢(n) = X(Z 77/7;—|—1,z’)

1 1=1
o((2h,)) =xtarora
Whittaker functional Q, : I(z) — Ind (Y)
f— / f(n 1dn
Normallzanon—l I Right-translation

lwahori Whittaker function ¢, (z; ¢) = 6/2(g),-1 (W(g)cbz_l)



Base case

dw(z; g) is determined by its values on g = w~*w’ with \ € ZZ,

and w' € W = S, such that [ positive roots

0 It (w’)_lai c AT <«— dominant weight
Ai — Aig1 2 e -
—1 if(w) e €A
/ . . wp=A+p .
w’-almost dominant weight A - - TASY/ASH

p=(r—1,...,1,0)

Bijection between data determining the values for lwahori Whittaker
functions and the boundary data for the lattice model.

Base case w' = w

Qb (Z w Aw ) — vg(w/)zA Compare: Z,, v (z) = (W) gw'p — o f(w') A +p



Recursion relations

Intertwining integral A% : I(z) — I(wz) A%®(g) :/ ®(w ™ ng) dn
NNwN_w—1
[Casselman-Shalika 80, ¢ ” ¢ [Casselman 80,
Brubaker—-Bump-Licata 1 z z Brubaker-Bump—Licata 15
rubaker—-Bump-Licata 15] Qz ASi (I)w rubaker—-Bump-Licata 15]
| eads to recursion relations equivalent to Yang—-Baxter equation!

T; zP ) (2; g) if £(s;w) > (w),

p L q) =
Z ¢Siw(z,g) {Til Zp¢w(z;g) It g(Szw) < f(’tU),

Demazure operators

— v—1







