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Multiple Dirichlet series  ! Metaplectic Whittaker functions  ! Solvable lattice models

The goal of this talk is to tell you how we use p-adic representation theory to say something about
number theory, and, if time permits, how we use solvable lattice models to say something about
p-adic representation theory.

1 Multiple Dirichlet series

A multiple Dirichlet series is a Dirichlet series in several complex variables
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n1. . .nr

An1. . .nrn1
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converging in some domain with large enough Re(si). We are interested in the case where this
Dirichlet series can be meromorphically continued to Cr the result of which is called an L-function.
This puts some complicated restrictions on the coefficients An1. . .nr and a lot of work has been put
into both verifying that series appearing in various examples can be meromorphically continued
as well as constructing new such multiple Dirichlet series from the ground up.

A standard way multiple Dirichlet series may appear in nature is to start with a Dirichlet series
in a single variable

P

n
ann

¡s and let an itself be an L-function in another complex variable. This
is useful, since using standard Tauberian arguments one can draw conclusions about an from the
behavior of the Dirichlet series

P

n
an n

¡s. This was used for example in [Goldfeld–Hoffstein 85]
to obtain estimates for the mean central values of quadratic L-functions. See also [Diaconu–Gold-
feld–Hoffstein 03] and [Fisher–Friedberg 03, 04] for higher moments. However, we run into problems
with meromorphic continuation beyond the third moment if we continue in the same manner.

We therefore turn to the construction of a certain class of multiple Dirichlet series called Weyl group
multiple Dirichlet series which manifestly have a meromorphic continuation. They are defined with
respect to a reduced root system Φ and an integer order n. This introduction of an order n allows
for example the multiple Dirichle series to be related to the distribution of n-th order twisted L-
functions studied by [Friedberg–Hoffstein–Lieman 03] as shown by [Brubaker–Bump 06].

We will first start with the rank 1 case which are the Kubota Dirichlet series. For n=2 the Kubota
Dirichlet series recover the quadratic L-functions L
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1.1 Kubota Dirichlet series

To define them, we first need some setup. The same setup will later be reused for multiple Dirichlet
series of general rank.

LetK be a number field ��n the group of n-th roots of unity. For convenience assume alsoK��2n
so that ¡1 is an n-th power.
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Fix finite set of places S � fall archimedean and those ramified over Qg large enough so OS :=
fx2K: jxjv6 1 for all v 2Sg is a principal ideal domain.

Let  K be an additive character on K which is trivial on OS but no larger fractional ideal. If a, c2OS are nonzero we
define the n-th order Gauss sum as these particular sums over roots of unity:

g(a, c) :=
X

dmodc
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�

where
�

d

c

�

n
is the n-th power residue symbol which is multiplicative in c, and for a prime p is defined as the unique n-th

root of unity satisfying
�

d

p

�

n
�d(Np−1)/nmod p where Np := jOS/pOSj which we will sloppily denote as jpj from here on.

The Kubota Dirichlet series is then for m2Z, s2C essentially1 defined as

D(m; s) :=
X

0=/ c2OS/OS
×

g(m, c) jcj¡2s jcj := jOS/cOS j

where g(m, c) are particular sums over roots of unity called Gauss sums.

[Kubota 69] showed that D(m;s) is the m-th Fourier coefficients of a (non-holomorphic) Eisenstein
series E(g; s) on the metaplectic n-fold cover of SL2(K). These metaplecic covers, or central
extensions, will be discussed later. As a consequence they satisfy a functional equation swapping
s and 1¡ s and can be meromorphically continued to the whole complex plane.

Unlike, for example, the Riemann zeta function, the Kubota Dirichlet series cannot be expressed as
an Euler product. Its coefficients are not multiplicative but instead satisfy a twisted multiplicativity

g(m, cc 0) =
�
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c 0

�

n

�

c 0

c

�

n

g(m, c)g(m, c 0) if gcd (c, c 0)= 1.

There is a similar property for m.

1.2 A first look at Weyl group multiple Dirichlet series

We use the same number field setup as for Kubota Dirichlet series of order n.
Further input data:

¡ Reduced root system Φ of rank r with Weyl group W

¡ s~ =(s1, . . . , sr)2C
r

¡ Twisting parameters m~ 2 (OS)
r

Then the corresponding Weyl group multiple Dirichlet series looks like this1

Z(m~ ; s~) :=
X

c~

H(c~;m~ )jc1j
¡2s1 � � � jcr j

¡2sr (2)

where c~=(c1, . . . cr) and each ci ranges over (OS \ f0g)/OS
�. It remains to define the coefficients

H(c~;m~ ). We will make two requirements:

1. We need Z(m~ ; s~) to have meromorphic continuation to s~ 2Cr.

2. The coefficients H(c~;m~ ) should satisfy a twisted multiplicativity

1.2.1 Meromorphic continuation

Example: Φ=A2, r=2.

1. I am hiding some technicalities related to the invariance of c under units. See [Bump 12] for details.
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Assume (2) is convergent the tube domain fRe(s1)> 1 and Re(s2)> 1g drawn suggestively like
this where we project to the real parts:

s2 =
1

2

s1 =
1

2

s2 =
1

2

s1 =
1

2

We also assume that if we collect the coefficients of jc2j¡s2 for each c2 we get a set of single variable
Dirichlet series (e.g. Kubota Dirichlet series) which have functional equations relating them to
the reflections in the critical line s1=

1

2
. Using a theorem by [Bochner 38] we can then obtain a

meromorphic continuation to the complex hull.

Thus, if we have a group of functional equations which is isomorphic to the Weyl group of the root
system Φ we can in this way obtain a meromorphic continuation to Cr.

group of functional equations =� Weyl group

1.2.2 Twisted multiplicativity

Like the Kubota Dirichlet series we will also impose twisted multiplicativity for the coefficients H.
It then remains to determine the coefficients for prime powers. For a prime p we create a generating
series called the p-part of the multiple Dirichlet series

X

ki=0

1

H(pk1, . . . , pkr;m~ )z1
k1 � � � zr

kr

where the zi are formal parameters.

1.3 Different definitions of the p-parts

We are left with constructing such p-parts for which the multiple Dirichlet series has a meromorphic
continuation using the above Weyl group method. This is a complicated combinatorial problem
and several constructions were developed in parallel.

1. Averaging method using a complicated Weyl group action on rational functions C(z1,..., zr)
[Chinta–Gunnells 10]. For type A, � 2Zr, h 2C(z1

n, . . . , zr
n) and simple reflection si this

action is

si ? z~
�h=

z~si�si(h)

1¡ jpj¡1z~¡n�i
((1¡ jpj¡1)z~b�i¡�i+1cn�i¡ g(�i+1¡�i¡ 1)z~

(n¡1)�i(1¡ z~¡n�i))

where g(a) := jpj¡ag(pa¡1, pa). The expression follows from working backwards from the
imposed functional equations and twisted multiplicativity, but it took quite some work to
show that it actually forms a W -action.
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2. Sums over a Kashiwara–Luzstig crystal basis or over Gelfand–Tsetlin patterns. For type A
[Brubaker–Bump–Friedberg 11a], for other cases see [Bump–Friedberg–Goldfeld 12]. In fact
there were two versions called Γ and ∆ which sum over different Gelfand–Tsetlin patterns
weighted differently.

3. Partition functions of solvable lattice models (mainly type A and C)
[Brubaker–Bump–Chinta–Friedberg–Gunnells 12, Ivanov 12].

Gelfand–Tsetlin patterns ! latticemodel configurations

4. p-adic spherical Whittaker functions on the metaplectic n-fold cover of a split, simple
group G whose coroots form the reduced root system Φ [Brubaker–Bump–Friedberg 11a,
Chinta–Offen 13, McNamara 11,16].

The whole Weyl group multiple Dirichlet series has long been expected to be global Whit-
taker coefficients of Eisenstein series on these covers. This was shown for type A in [BBF
11a] by induction on rows. Note that these Whittaker coefficients satisfy the same twisted
multiplicativity because of the metaplectic cover.

At the beginning it was not at all clear if the different methods produced the same objects. In fact,
a major part of a book by [Brubaker–Bump–Friedberg 11b] is devoted to a combinatorial proof
of the fact that the two crystal bases versions Γ and ∆ agree. A later reinterpretation in terms of
lattice models shortened the proof to a simple application of a Yang–Baxter equation.

Historically, 1 and 2 were developed simultaneously and 3 has a natural connection to 2. The
relation to Whittaker functions 4 tied everything together.

1  ! 4  ! 2  ! 3

2 Whittaker functions

I will now discuss some of my recent research on metaplectic Whittaker functions which is joint
work with Brubaker, Buciumas and Bump. Our representation theory results are for any reductive
group G. but we also have some results connecting to solvable lattice models which is for GLr+1
only. For simplicity, I will focus only on GLr+1 here as well.

Whittaker functions are a useful tool to realize representations in a concrete space with some
desirable properties.

2.1 Non-metaplectic case

Let F be a non-archimedean local field, for example corresponding to a non-archimedean place of
the number fieldK from before. Let o be the ring of integers, p the maximal ideal with generator p a
prime, and let  F :F!C� be some fixed additive character on F trivial on o but no larger fractional
ideal. Let T denote the diagonal matrices of G=GLr+1(F ). Denote by B the upper triangular
matrices,N the subgroup of B with unit diagonal, and similarlyN¡ for the lower triangular version.

A space of Whittaker functions is determined by

¡ Representation � of G. Here: principal series representation which induces a representation
(i.e. a character) on T to G parametrized by z~ 2 (C�)r+1. They are functions f :G!C.

¡ Whittaker functional Ω:�!C such that for f 2� and n2N¡ : Ω(�(n) � f)=  (n)Ω(f)

where  (n)=  F (
P

i=1
r

ni+1,i). Here: Ω(f)=
R

N−
f(n) (n)¡1dn for f 2 I(z~).
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Rather we will consider two subspaces of I(z~).

1. I(z~)K the subspace of spherical vectors in I(z~), that is functions which are right-invariant
under K :=GLr+1(o). This space is one-dimensional and we will denote a basis element

with convenient normalization by Φ�
z~:G!C.

2. I(z~)J which are right-invariant under the Iwahori subgroup J �K consisting of matrices
which are lower triangular mod p. There is a basis enumerated by W which decomposes Φ�

z~

into functions supported on different Bruhat cells.

Φw
z~ (bw 0 j)=

(

Φ�
z~(b) if w 0=w

0 otherwise
b2B, j 2J

X

w2W

Φw
z~ =Φ�

z~

It is the spherical Whittaker functions (although for the metaplectic case) that are connected to
multiple Dirichet series, but the richer structure for the Iwahori Whittaker functions make them
easier to compute. We can then recover the spherical one by summation.

The Iwahori Whittaker functions we are interested in are thus (suppressing some normalization)

�w(g; z~) :=Ω(�(g) �Φw
z~ )=

Z

N−

Φw
z~ (ng) (n)¡1dn

2.2 Demazure-like operators

Following [Brubaker–Bump–Licata 15], a convenient way to compute these Iwahori Whittaker
functions is via recursion in the length of w using particular intertwining operators Ai: I(z~)

J!
I(siz~)

J, f 7!
R

N\wN−w−1
f(w¡1ng)dn. These are G-homomorphism so

(ΩAi)(�(g) �Φw
z~ )=Ω(�(g) � (AiΦw

z~ ))

and it is known how Ai interacts with Ω [Casselman–Shalika 80] and the basis Φw
z~ [Casselman 80]

(the latter of which gives rise to a Φsiw
z~ ). Solving for the corresponding Whittaker function �siw(g;

z~) :=Ω(�(g) �Φsiw
z~ ) one gets that

�siw=Ti�w for siw>w

where the operators Ti are defined as

Ti=
1¡ si¡ q¡1(1¡ z~¡�isi)

z~�i¡ 1
q := jo/pj

and form a finite Iwahori Hecke algebra.

Using this we computed all values of the non-metaplecic Iwahori and parahoric Whittaker functions
in [Brubaker–Buciumas–Bump–HG arXiv:1906.04140]. Previously only values for g on the torus
had been computed.

2.3 Metaplectic case – a distilled version

Assume that F contains the group of n-th roots of unity �n (or rather �2n for simplicity). The
metaplectic n-fold cover G̃ of G is defined by a central extension

1¡! �n¡! G̃¡!
pr
G¡! 1
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Let T̃ =pr¡1(T ). This is no longer abelian and its irreducible representations are nr-dimensional.
Since the principal series representation I(z~) was an induced representation from the torus, the

metaplectic version of Φw
z~ becomes vector valued with nr components which we label by �.

Thus, the metaplectic version of the Whittaker functional Ω: I(z~)!C must now also include
a projection to one such component �. To obtain the Whittaker function used for the multiple
Dirichlet series one takes the average over �.

2.3.1 Results

In [Brubaker–Buciumas–Bump-HG arXiv:2012.15778] we show the following:

1. Using the same method as above with the intertwining operators, we obtain vector-valued
metaplectic Demazure operators and compute all values for the metaplectic Iwahori

Whittaker functions for all µ. Previous work had only focused on the �-average, as well
as arguments g on the torus.

2. The corresponding metaplectic vector Demazure operators form an affine metaplectic2 Hecke
algebra and the �-averaged operator recovers the Chinta–Gunnells action from p-

adic representation theory in a natural way.

This was achieved by comparing the �-averged Demazure operator with the one in
[Chinta–Gunnells–Puskás 17, Patnaik–Puskás 17] obtained by starting from the Chinta–Gun-
nells action.

For another recent (non p-adic) representation-theoretic explanation of the Chinta–Gun-
nells action coming from the double affine Hecke algebra see [Sahi–Stokman–Venkateswaran
arXiv:1808.01069].

3. The metaplectic Iwahori Whittaker functions are equal to the partition func-

tions for a solvable lattice model constructed in the same paper with corresponding
boundary conditions. Furthermore, there is a bijection between the data determining

the Whittaker functions and the boundary conditions for the lattice model.

The lattice model configurations consist of colored paths in a grid following certain rules.
There are two types of palettes of colors: one associated to the Iwahori basis Φw and one
to the metaplectic vector component �. We call these colors and super colors.

The lattice model seems to exhibit a duality between colors and super colors which we are
currently investigating. The way they appear in the lattice model hints of a duality between
the cover degree n and the rank r.

Summarize:

¡ We have seen how representation theory explains the form of the Weyl group multiple
Dirichlet series via metaplectic Whittaker functions

¡ Solvable lattice models are useful for computing and maniuplating Whittaker functions

¡ Hints of a duality between the cover degree n and the rank r.

Iwahori and parahoric Whittaker functions arXiv:1906.04140

Metaplectic Iwahori Whittaker functions: arXiv:2012.15778

2. The Bernstein relations conerning Ti and shifts in z~ are modified with some powers of n.
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