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Construct first toy lattice model describing Schur polynomials.

See how lattice models can be used to prove identities.

Define the spherical Whittaker functions we studly.

Refine to lwahori Whittaker functions by adding colors to lattice model.
Metaplectic covers and Whittaker functions.

lwahori—-metaplectic duality.
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Why lattice models?

Powerful toolbox from statistical mechanics to manipulate models
and prove identities.

Building new bridges between widely different mathematical objects.
(See also Paper 0).

Surprisingly effective at describing these representation theoretical
objects: bijection of data, highly constrained by solvability conditions.

Generator of ideas and conjectures.
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. These edges will form paths on the grid, and
for given boundary conditions there is a finite
number of configurations called states.

Z2

A state s is assigned a Boltzmann weight 8(s) € C|z] depending on
parameters z = (21, 22, ..., 2,) € C" (one for each row).

The partition function, given som fixed boundary conditions:

Z:= Y ps)

~state s
with given b.c.

Goal: any Schur polynomial in z = such a partition function.
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Schur polynomials

Let A = (Aq,...\) be a partition of » padded with zeroes to length ». We
define the Schur polynomial sy : C" — C by

(2) det(z;" "),
S = :
" det(z;” )i

where z = (z1,...,z,)and p=(r—1,r—2,...,1,0).

Combinatorial description using Semi-Standard Young Tableaux of shape A

(@)= ) 2"

TeSSYT(N)

11112 (#ones, #twos, #threes, ...)

wt(T) = (2,2,0,0,1)

(\V)

A=(3,1,1)  SSYT(\)>T =
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2
0
Let A()(T) € Z! be the shape of T after removing labels larger than i
A®(T) = Shape( 1[3 ) — (2,1,0) These will label which columns are
5 - filled in for each row.
A2(T) = Shape( 5 ) = (1,1)

AD(T) = shape([1]) = (1)

To avoid overlaps we add p\") = (r — 1,7 — 2,...,1,0) to each shape:
ABHTY + p3) 4 2 0
A@(T) 4 p&) % = 2 1
A (T) 4 pD) O,

Gelfand-Tsetlin pattern
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Five different vertex configurations:

SSYT +— lattice paths using these vertex configurations
shape A filled in top boundary edges at columns A + p

Goal: capture z"*(T) using lattice model data sx(z) = Z zWH(T)

| | | TeSSYT(A)
wt(7") counts the number of filled in left-edges in each row

Introduce row parameters z1,..., 2z, € C and vertex weights at row 1
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»_[1]3 Lattice paths .,
- state § ——
23
Five different vertex configurations: Bls) = #5222,
1 2 Z; Z; 1
Goal: capture z**T) using lattice model data sa(z) =) 2"
TESSYT(N)
Boltzmann weight 8(s) := ][ vertex weights = 2* - (woz)™*"
vertex wo(21, 22,5 2r) = (Zry - -y 22, 21)
Partition function Z(\,z) := Z B(s) = z"sx(wpz) = z°s)(z)

s with top A4p
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Cauchy identity

Z sx(x)s5. (y) = H H(xz + y;) [Macdonald 1992 (0.11")]
A i=1 =1
\ = complement of \ 1/ = conjugate of u
Ca
\ = A=[T N =

u ‘Qﬂip/\/‘
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Weights are adjusted for solvability (to satisfy Yang—Baxter equation).
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1 2 —v 2 (1 —v)z 1

/S v Y

These new weights introduce a slight deformation of the partition function

Z(Nz) =2 | [(1 — vE)s,(z)

1<J
[Tokuyama 1988, Hammel-King 2007, Brubaker—Bump-Friedberg 2009]

If v = —1 then a flip preserves the Boltzmann weight of the state.
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Y1

Y2

2.

Cauchy identity

N (

w
Z;op half(y)

J

)

),

[Bump—McNamara—Nakasuji 2014]



Y1

Y2

2.

Cauchy identity

N (

~
ZP " (y)
W,
)
7501l ()
),

[Bump—McNamara—Nakasuji 2014]



Y1

Y2

2.

Cauchy identity

N (

~
ZP " (y)
W,
)
7501l ()
),

Z Zbot hahc top half(y)

[Bump—McNamara—Nakasuji 2014]



Y1

Y2

2.

Cauchy identity

4 R
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\_ Wy,

. B
Z30t 4l (x)

\_ W,

Z Zbot hahc top half(y)
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4 )
flip C ZP " (y)

- )

. R
Z3°t " (x)

- ),

Z Zbot hahc X top half(y)

i (v= —1)U /‘hp

[T11 G+

1=1 7=1

ZSA(X) " Sy (y)

A
[Bump—McNamara—Nakasuji 2014]



Whittaker functions
Z(N\z) =z° H(l — vz—‘;)sA(z)

i<j

IS secretly a Whittaker function
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Whittaker functions

£k L Character
G =G Q) B( *) N_< .°1> W N — CX

(generic; standard)

Whittaker model 7 —— Wy(m) C Ind%$ ()
Irreducible representation {f:G—=C| f(ng) =v(n)f(g9)}

Whittaker function € Wy, ()

Need to specity representation and embedding:

femw We(f) : g— | flwong)w(n) 'dn
VoL long Weyl group element

The Whittaker model is unique if it exists |Gelfand-Kazhdan 1972, Rodier 1973].
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Whittaker functions

Whittaker model © —— Wy (7)) C Ind$ (¢)

Unramified principal series representation m, given by z € (C*)"
Induced from the Borel subgroup B using an unramified character given by:
p? = diag(pt,...,p ) s 27 WA = z1_>‘7° ez AE LT

r

I Right-invariant under K := GL,.(Z,)
There is a unique spherical vector f,; in m, up to normalization.
The corresponding (appropriately normalized) spherical Whittaker

function Wy, (f2) is determined by its values on g = p* as
L discrete set of data A € Z

Wy ()W) = [ —p™ 2)sa(2) =277 Z(A;2) with v = p!

1<J

[Casselman 1980, Casselman—Shalika 1980]
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Generalizations

spherical vector
for G = GL,.(Q,)

1°(gk) = f°(g) for
ke K :=GL.(Z))
maximal compact

unigque up to normalization

l\wahori fixed vector
for G = GL,.(Q,)

f(gk) = [f(g) for
ke J=B" (modp) CK
lwahori subgroup

G = BK
RS
B = o
%
i
B_: .
G = BwJ
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Generalizations

| £°(gk) = £°(g) for G =Dk
spherical vector ke K :=GL,(Z,)

T * - *k
for G = GL-(Qy) maximal compact B — -
unique up to normalization E

*
B™ =
f(gk) = f(g) for
wahori fixed vector ke J=B" (modp) C K~ _ Bw.J
for G = GL,.(Q,) lwahori subgroup CW—S
w —r

basis enumerated by W = S,

Refinement: f2 = »  fi*) each supported only on Bw.J
weWw
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Generalizations

On the lattice model side this refinement corresponds to
assigning a different color to each path, making them distinct.

Schematically (with details to follow):

l Paper 1 (b-vertex; v = 0) Paper 2 (6-vertex; v # 0)
Schur polynomial spherical Whittaker function
< . A | Duplicate colors:
O - o]
o Duplicate colors: O | parahoric Whittaker
< | Demazure characters N .
) o | functions
\/ v

Demazure atoms lwahori Whittaker functions
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Color refinement
Ordered palette of r colors: R > B > G

4 3 2 1 0 4 3 2 1 0 4 3
R B G R

G

-»> - k.

B

New right boundary data: permutation w € S, of (R, B, G)

Have constructed vertex configuration weights such that the
partition function is refined to:

uncolored Z(\;z) = Z Z (N, w;z)  colored

wWES,

Papers 1 & 2] Concept based on [Borodin—-\Wheeler 2018]
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Color refinement

uncolored Z(\;z) = Z Z (N, w;z)  colored

In more detail: wESy

Paper 1 (5-vertex; v = 0)

Theorem:

Z (A, w;z),—9 = Demazure atom

> _wes, — Schur polynomial

Paper 2 (6-vertex; v # 0)

Theorem:

Z(A\,w;z),—,-1 = lwahori Whittaker function Wy (f3*))(p*)
>_wes, —> Spherical Whittaker function
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Theorem:
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Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R B G
G G
R B
- 0 R i R
B B

uncolored Z(\;z) = Z Z (N, w;z)  colored

cS, y .
v Bijection of data
states +— crystal Demazure atoms

In more detalil:

Paper 1 (5-vertex; v = 0)
Theorem:

Z (A, w;z)y,—o = Demazure atom
> _wes, — Schur polynomial
Paper 2 (6-vertex; v # 0)
Theorem:

Z(A\,w;z),—,-1 = lwahori Whittaker function Wy (f3*))(p*)

ZwEST — Spherical Whittaker function

boundary data +— Whittaker data
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Color refinement

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
R B G R B G
G G
R B
- > R i R
B B

Extra structure — Partition function from recurrence relations

Solvability via Yang—Baxter equations from underlying quantum group

(and 3 (metaplectic))
Theorem: [Papers 1, 2] Z(\, Si, ---8i2) =Ty, - Ty 2P

Divided difference Demazure operators J
T, f(2) = T=pat f(si2) + 1255 [ (2)

Same relations as for Whittaker functions in [Brubaker—Bump-Licata 2015] (hon-metaplectic)

( [Chinta—Gunnells—Puskas 2017, Patnaik—Puskas 2017] (metaplectic) )
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Metaplectic groups

spherical vector

Number theory generalization ‘ for G = GL,.(Q,)
[Brubaker—-Bump—Chinta—

Friedberg-Gunnells 2012] / Representation theory refinement

Papers 1 & 2
fStheri(t:aI l\/ei’FOr duality . lwahori fixed vector
or metaplectic oot
n-cover G of G Paper 4 r(Qp)
\ Paper 3 /

lwahori fixed vector
for metaplectic

n-cover G of G

Blue terms will be defined in the next slides
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Metaplectic Whittaker functions

The metaplectic n-cover G of G is a central extension:

21i/n

| — (e2mi/my s G PO oy

t group of n-th roots of unity

The principal series representation w, with z € (C*)" is l
constructed similarly, but is now vector-valued of dimension n'.

%
T = ( ) CcG abelian — Its irreps are 1-dimensional
b S

~

T :=proj *(T) not abelian T /max abelian = A/nA = (Z/nZ)"
weight lattice

[Matsumoto 1969, Kazhdan—Patterson 1984, Brylinski-Deligne 2001, McNamara 2012]
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Metaplectic Whittaker functions

The metaplectic n-cover G of G is a central extension:
| — (e2mi/my s G PO oy

The principal series representation m, with z € (C*)" is
constructed similarly, but is now vector-valued of dimension n'.
>l<.
T = Cc G abelian — Iits irreps are 1-dimensional
X

T := proj ' (T) not abelian T /max abelian = A/nA = (Z/nZ)" :

Whittaker module no longer unique; project to component o € (Z/nZ)".
Thus, we get a basis of n” metaplectic spherical Whittaker functions.

Often, (e.g. [Chinta—Gunnells—Puskas 2017, Patnhaik—Puskas 2017, McNamara 2016, Sahi—
Stokman—Venkateswaran 2021]) the o-average is considered.
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Connections to number theory

Spherical Whittaker functions are local components of Fourier-Whittaker
coefficients of global spherical automorphic forms.

e Reductive G- (and generic Whittaker character 1))

Fourier coefficient = | | (Whittaker function) <« uniqueness

- P OO
e Metaplectic G:

Fourier coefficients do not in general factorize as Euler product, but satisfy
a twisted multiplicativity involving Gauss sums.

Determined by their so-called p-parts which are metaplectic spherical
Whittaker functions.

Used for constructing Weyl group multiple Dirichlet series which have,

together with their applications to L-functions, been studied extensively in:

Kubota 1969, Bump-Friedberg—Hoffstein 1996, Diaconu-Goldfeld-Hoffstein 2003, Friedberg-

Hoffstein—Lieman 2003, Brubaker—Bump—-Chinta—Friedberg—Hoffstein 2006, Brubaker—Bump
2006, Chinta—Gunnells 2009, Brubaker—Bump-Friedberg 2011, ...



Metaplectic groups

spherical vector
for G = GL,.(Q,)
1-dimensional

fStheri(t:a| l\/ei’FOr duality . lwahori fixed vector
or metaplectic ool

n-cover G of G Paper 4 (Qp)

S| = r!-dimensional

n"-dimensional
Paper 3

lwahori fixed vector\
for metaplectic

n-cover G of G

\ (n” - r!)—dimensionau

Includes the others as subcases
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Metaplectic Iwahori lattice model

Two sets of r paths assigned colors from two different palettes:

e 1 colors

Whittaker model
o € (Z/nZ)"

Theorem: [Paper 3]

distinct south-east moving paths
e 7 Supercolors south-west moving paths )

(dotted)

Boltzmann weights with Gauss sums

group argument g = p*

lwahori basis
w € S,

Z(\,w, 0;z) = metaplectic lwahori Whittaker function W3 (")) (»™)

Bijection: boundary data +— Whittaker function data



Metaplectic Iwahori lattice model

lwahor|

Theorem: [Paper 3]
Z(\,w,o;z) = metaplectic lwahor