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Preamble

Based on the book:

[FGKP] "Eisenstein series and automorphic representations -

With applications in string theory" (CUP, 2018)

Philipp Fleig, HG, Axel Kleinschmidt, Daniel Persson

Early version on arXiv:1511.04265. References to sections are for new version: TOC

PDF of slides also designed as a guide to the literature - references are clickable.

Some books about string and field theory in general:

- Quantum Fields and Strings : A Course for Mathematicians
[Deligne-Kazhdan-Etingof-Morgan-Freed-Morrison-Witten]

- Superstring theory [Green-Schwarz-Witten Vol 1, Vol 2]

- String theory [Polchinski Vol 1, Vol 2]

- Basic Concepts of String Theory [Blumenhagen-Lust-Theisen]
- Lectures on String Theory [Tong]

- Conformal Field Theory [Di Francesco-Mathieu-Senechal]


http://www.cambridge.org/core_title/gb/502216
https://arxiv.org/abs/1511.04265
https://assets.cambridge.org/97811071/89928/toc/9781107189928_toc.pdf
https://doi.org/10.1017/CBO9781139248563
https://doi.org/10.1017/CBO9781139248570
https://doi.org/10.1017/CBO9780511816079
https://doi.org/10.1017/CBO9780511618123
http://dx.doi.org/10.1007/978-3-642-29497-6
https://bookstore.ams.org/qft-2/
http://www.damtp.cam.ac.uk/user/tong/string.html
https://doi.org/10.1007/978-1-4612-2256-9

Outline — Part I

Overview of different ways automorphic forms and modular
forms appear in string theory.

Focus on: low-energy expansion of 4 graviton scattering
amplitudes.

Why are the coefficients in this expansion automorphic?
Automorphic representations from supersymmetry (first look)
Extracting physics from Fourier coefficients in SL, example

Automorphic forms and Fourier coefficients in the adelic
framework



Outline — Part I1

Automorphic representations and the global wave-front set

Different parabolic subgroups and their interpretations in
ohysics

BPS-orbits and character variety orbits
Computing Fourier coefficients

» Langlands' constant term formula

» (Casselman-Shalika formula

» The subgroup reduction formula

* Some new results

Kac-Moody groups  (in preparation for the last two talks on Friday)



PART I



Automorphic and modular
forms in string theory

1. Generating functions for quantum state counting

#(states with charge ~) = d(7?/2) Where — Z d(n

2. Perturbative expa NSIoN  (in orders of the string coupling constant g,)

3. _LOW-energy expa NSion (in orders of the string area scale &)



Automorphic and modular
forms in string theory

1. Generating functions for quantum state counting

2. Perturbative expansion  (in orders of the string coupling constant g;)
@ LOV\/—Eﬂergy expaﬂsion (in orders of the string area scale &)

Order in g Low-energy expansion

Perturbative expansion

—  Orderinda



Compactifications

Scattering amplitude of four gravitons (two in, two out) in type

IB string theory on a manifold X x R0~
L Compact d-dimensional

X x Ri0-d Conserved supercharges Conserved supersymmetry spinors N
R0 32

T4 x RV 32

T% x R* 32 N =38

K3 xT* x R* 16 N =4

CY3 x R? 8 N =2

See details in [FGKP §15.4]


http://www.cambridge.org/core_title/gb/502216

Scattering data

+ Momenta
Mandelstam variables: s = — 2 (k; + ky)?, ¢t = —%(ky +k3)%,  u=—2(ky + ky)?

- Polarizations

€1,...,€4

» Scalar parameters
String moduli: string coupling g, parameters for X such as radii



Toroidal compactifications

» Scalar parameters
Toroidal compactifications X = T moduli space is G(R) /K (R)

T*xR”  Splitreal form  Maximal compact subgroup J

D=10—-d G(R) K(R)
10 SLy(R) SO5(R)
9 SLy(R) x R* SO5(R)
8 SL3(R) x SLy(R) SO3(R) x SO5(R)
7 SL5(R) SO5(R)
6 Sping 5(R) (Spm5(R) X Spin5(R))/Zz
0 Eg(R) USps(R)/Zs
4 E7(R) SUs(R)/Zy
3 Es(R) Sping(R)/Zs

[Cremmer-Julia 78]


http://dx.doi.org/10.1016/0370-2693(78)90303-9

Toroidal compactifications

Toroidal compactifications X = T moduli space is G(R) /K (R)

D=10—d G(R) K (R)
10 SLy(R) SO5(R)
9 SLo(R) x R SO4(R)
8 SL3(R) x SLy(R) SO3(R) x SO5(R)
7 SLs(R) SO5(R)
6 Sping 5(R) (Sping(R) x Sping(R))/Zy
> Eg(R) USps(R)/Zs
4 E7(R) SUs(R)/Z;
3 Fs(R) Spin,g(R)/Zs

i G = Fan
o—O



Low-energy expansion

4-graviton scattering amplitude on 7% x R” (D =10—d)

3 ) N\
A<D)(Sat7u7€i;g) = | — > > Eé?q))(g)agag R*
0'3 e e )

p=>0 ¢=>0

Spherical functions on G(R) = E;,1(R). J o = 8" + 1"+ uP
To be determined.

Linearized Riemann curvature tensor
l for each graviton « k,, €,,.,, k., + permutations

4 . M1...48 4V1...V8
R = RM1M2V1V2 R,LW,USV?VSt t

T

Standard rank 8 tensor such that, for antisymmetric matrix M:

t,ul...,uleuLu2 . e M,u7,u8 p— 4TI’(M4) - (Tr(MQ))Q



Low-energy expansion

A convenient way to describe scattering amplitudes is by an effective
action: a field theory whose classical interactions give rise to the same
gquantum corrected amplitudes obtained from string theory.

The classical solutions are given by the stationary points of the action functional.

momentum — 9 oboiRY — VAPt R4

Same contraction but with full j

Space-time metric g space-time Riemann curvature tensor

S = SEH+/d \/7(( )35((53)(9)34+(0/)55(10)( )VIR +(a )65(01)( )V6R4+---)

L Einstein-Hilbert action in general relativity
SEH = /dDZCV -G R R4, D4R4, D6R4



Automorphic forms

In the next few slides we will list the conditions on the coefficient functions imposed
by string theory and compare them to the definition of an automorphic form.

+ Automorphic invariance U-duality (G(Z)-invariance)
.+ K-finiteness Spherical (K (R)-invariance)
+ Z-finiteness Supersymmetry

String theory limits

+ Growth condition e.g. perturbation theory



U-duality

Two physical theories are dual it they give the same physical
observables, such as scattering amplitudes.

In string theory, U-duality implies that the coefficients £, 4 (g) in
the 4-graviton scattering amplitudes are invariant under right-
translations of G(Z) = Ey.1(Z)

g(p,Q) (797{) — 5(1%61) (9) S G(Z)a k € K(R)

Why discrete? Should preserve the lattice of quantized charges,

[Hull-Townsend 95, Obers-Pioline 99]


http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://dx.doi.org/10.1016/0550-3213(94)00559-W

U-duality

g(p,Q) (79]“) — g(p,Q) (9) S G(Z), k € K(R)

D=10—d G(R) K(R) G(Z)
10 SLy(R) SO5(R) SLy(Z)
9 SLy(R) x RT SO5(R) SLy(7Z) X Zo
8 SL3(R) x SLy(R) SO3(R) x SO5(R) SL3(7Z) x SLy(7Z)
7 SLs(R) SO5(R) SL5(Z)
6 Sping 5(R) (Sping(R) x Sping(R))/Z, Sping 5(Z)
5 Fs(R) USpg(R)/Zs Fs(Z)
4 7 (R) SUs(R)/Z; B (2)
3 Es(R) Spin,(R)/ 2 Es(Z)

[Hull-Townsend 95, Obers-Pioline 99]

See also [Becker-Becker-Schwarz 06, Polchinski 07, Blumenhagen-Lust-Theisen 13]



Supersymmetry

There are similar expansions based on scattering amplitudes of
other particles which can be added to the effective action.
The different coefficients are related by supersymmetry.

Einstein gravity — Supergravity
SEH — SSUGRA

Requiring that the effective action is supersymmetric leads to
differential equations for the coefficients &, 4 (9g)

We will see later how these differential equations are connected
to qutomorphic representations.

See the different results in later slides for references



Limits
String theory also tells us how &, ) (g) behave in different limits.

Recall that the parameters for G(R)/K(R) include:

+ String coupling gs.
gs — 0 determined by string perturbation theory.
:>>\/( ' — C ¥ > > §+
N & \:/\/_\(/

L~~~ %
+ Radius r of compactified dimension.
r — 00 recovers scattering amplitude for dimension D + 1.



Example for D=10, G=SL;

Let us make the conditions more explicit in an example.
G(R)/K(R) = SLy(R)/SO,(R) = upper half-plane H >z =z +iy

Relevant part of effective action: (&0 =€)

(,9)
g((),()) (Z)R4 + (&/)25(1,0)(2)V4R4 + (@,)35(1,0) (Z)V6R4

- U-duality gives automorphic invariance:

a b

Epa(1(2) =Epa(2)  (2) = Ziz v = (C d) € SLy(Z)

+ Supersymmetry gives differential equations:
(AH — %)5(070) (Z) =0 (AH — %)5(170) (Z) =0 (AH — 12)5(0’1) (Z) — —(8(0,0) (Z))

Ay = 4y*0.0- = y*(0; + 9;)
[Green-Sethi 99, Sinha 02, Green-Vanhove 06]

2


http://dx.doi.org/10.1103/PhysRevD.59.046006
http://dx.doi.org/10.1088/1126-6708/2002/08/017
http://dx.doi.org/10.1088/1126-6708/2006/01/093

Example for D=10, G=SL;

5(070) (Z)R4 + (&/)25(1’0)(2)V4R4 + (Oé,)gg(l’()) (Z)V6R4

+ U-duality gives automorphic invariance:

az + b

Epa)(V(2)) = Ep,g(2) v(2) = ot d Y= (i Z) € SLy(Z)

+ Supersymmetry gives differential equations:

(A — HEe0(2) =0 (Ag—5)E10(2) =0  (Ag—12)E01)(2) = —(Eo0)(2))

2
Ay = 4y20,05 = y*(0* + 85)

+ Perturbative expansion gives limit y=! = g, — 0:

A

P=¢




Example for D=10, G=SL;

+ Perturbative expansion gives limit y=' = g, — 0:

A x (Atree—level T 932"40”@'|00p T )R4

Compare with z in the
Y T S—\O P -

S Ly (Z)-invariant string
moduli space G(R)/K(R) = H
1 T'(1 =)' (1 —)I'(1 — u)

Atree-level =
tree-level — " M1+ )1+ 61+ u)
2o ¥ Modular invariant function in torus modulus 7.
~
Aone-loop — 271‘/ (Im 7_)281(8,75,’&’7')

F
t_ Fundamental domain of SL,(Z) acting on H

4
1
Bl(S,t,U‘T) — F / dQZi exp( E SijG(zi — ZJ‘T))
2

12121(7) 1<<y9<4

$12 — 834 — S
S13 = Soq = 1
T_ S14 — S23 — U

Torus with modulus 7

[Green-Schwarz-Witten 87, Green-Schwarz-Brink 82, Gross-Witten 86]


https://doi.org/10.1017/CBO9781139248563
http://dx.doi.org/10.1016/0550-3213(82)90336-4
http://dx.doi.org/10.1016/0550-3213(86)90429-3

Example for D=10, G=SL;

+ Perturbative expansion gives limit y=' = g, — 0:

Atree-level — stu ) ( — i T 2C<3) + C(5)02 + gg(3)203 + (9(0/4)

Aeioap =27 [ LB tulr) = 40(2) + 5C2)0(a + O(a’)

F

Collecting powers of o/ and switching from string frame to Einstein frame giving
extra powers of g.:

E00)(2) = 2¢C3)y* 2 +4¢(2)y 2 + . ..
Ea,0(2) = (5)95/2
4

Eon(z) = SCEH + 5B+

N

[Green-Russo-Vanhove 08, D'Hoker-Green-Vanhove 15]


http://dx.doi.org/10.1088/1126-6708/2008/02/020
http://dx.doi.org/10.1007/JHEP08(2015)041

Example for D=10, G=SL;

5(070) (Z)R4 + (&/)25(1’0)(2)V4R4 + (Oé,)gg(l’()) (Z)V6R4

+ U-duality gives automorphic invariance:

az + b a b

Epa)(V(2)) = Ep,g(2) v(2) = ot d Y= (c d) € SLy(Z)

+ Supersymmetry gives differential equations:

(A — 00 (2) =0 (Au—2)E10(2) =0  (Au—12)E01(2) = — (oo (2))’
Ay = 4y20,05 = y*(0* + 85)
+ Perturbative expansion gives limit y=! = g, — 0:

E00)(2) = 2¢(3)y*? +4¢(2)y ' + ...
En)(2) =B+ ...

Eon(z) = 3CB +5C@CE+ .



Example for D=10, G=SL;

g((),()) (Z)R4 + (&/)25(1’0)(2)V4R4 + (@,)35(1,0) (Z)V6R4

+ U-duality gives automorphic invariance:
+ Supersymmetry gives differential equations:

(A — HEen(2) =0 (Ag—25)E10(2) =0  (Ag—12)E01)(2) = —(Eo0)(2))

2

+ Perturbative expansion gives limit y=! = g, — 0:

E.0)(2) and Eq.0y(#) are automorphic forms

E,1) Is automorphic invariant, but not Z-finite. Thus, strictly not an automorphic form.



Example for D=10, G=SL;

g((),()) (Z)R4 + (&,)25(1,0)(2)V4R4 + (@,)35(1,0) (Z)V6R4

+ U-duality gives automorphic invariance:
+ Supersymmetry gives differential equations:
(A — DE0n(2) =0  (Ap—29)10(2) =0  (Ag—12)E01(2) = — (oo (2))

2

+ Perturbative expansion gives limit y=! = g, — 0:

Unique solutions:
E(s;2)= ) Im(y(2))°

E0.0)(z) =2C(3)E(2; 2) YEB(Z)\SLx(2)
B(Z) = (%) N SLy(Z)
cao(z) = C(5)E(%’ ?) AuE(s; z) = s(s = 1)E(s; 2)

[Green-Gutperle 97, Green-Vanhove 97, Green-Gutperle-Vanhove 97, Pioline 98]


http://dx.doi.org/10.1016/S0550-3213(97)00269-1
http://dx.doi.org/10.1016/S0370-2693(97)00785-5
http://dx.doi.org/10.1016/S0370-2693(97)00931-3
http://dx.doi.org/10.1016/S0370-2693(98)00554-1

VOoR4-term 1n D=10

5(070) (Z)R4 + (&,)25(1’0) (Z)V4R4 + (Oé,)gg(l,()) (Z)V6R4

(A~ 12)E01(2) = —(E0n ()" Eonlz) = 202 + 4C)B)y + ... asy — oo

| Not a character as for
Solution: r Eisenstein series
Z <I> — Complicated expression
involving Bessel functions
’Y€B N\SL2(Z and rational functions

B(2) = gg(g)%ﬁ | éﬂQC(S)y £ 3 e (y)emine
n7#0

[Green-Miller-Vanhove 15, Green-Vanhove 06, Bossard-Verschinin 15,
D'Hoker-Green-Pioline-Russo 15, Bossard-Kleinschmidt 16]


http://dx.doi.org/10.4310/CNTP.2015.v9.n2.a3
http://dx.doi.org/10.1088/1126-6708/2006/01/093
http://dx.doi.org/10.1007/JHEP07(2015)154
http://dx.doi.org/10.1007/JHEP01(2015)031
http://dx.doi.org/10.1007/JHEP01(2015)031

Physical interpretation of
Fourier expansions

Rewrite S Lo-Eisenstein series in terms of lattice:

S

1 Yy
E(s;z) = g E(s;z) = Im(vy(z))?
(572) 2((2s) cz + d|28 Z !

(e.d)eT? vEB(Z)\SL2(Z)
(¢,d)#(0,0)

Poisson resummation gives:
Modified Bessel function of the second kind _l

s | &(2s5—1 —S | 3 s—1 TIMX
B(s;2) =y + 57y i D Iml o1 (m) Ky (2m[m]y)e?

N———— —
Constant term Non-zero modes

2=+ 1y £(s) = 7T_3/2F(8/2)C(3) 1 _os(m) = Z Jl-2s

d|m




Physical interpretation of
Fourier expansions

Poisson resummation gives:

E(s;2) = y*+8552y" S:j@;i)Z\mlS‘im os(m)K,_1 (27mly)e

meZ\{0}

2=+ 1y £(s) = 7T_3/2F(8/2)C(5) 1 _os(m) = Z Jl-2s

In perturbartive expansion limit y=* — 0: (95 — 0)

S—3

yEK, s (27 m|y) = e”2lml

1
- Oy~ !
/T O0)



Physical interpretation of
Fourier expansions

Exponentially suppressed in

5(0,0) (Z) — QC(?))E(%E Z) perturbative limit y — oo (gs — 0)
perturbative non-perturbative
/—/%

E0,0)(2) = QC(3)y3/2—|—4C(2)y_1/2_|_27T Z \/Wg_Q(m)e—Sinst(Z)(1_|_O(y—1))

—_——— — — meZ\{0}

M >\/<;/C amplitudes in presence of instantons
\‘/\C VT S —\

Sinst (2) = 2w |m|y — 2wima

The Fourier expansion of &£ ) is very similar, but the one for £y 1) is much more
complicated involving Kloosterman sums and nested integrals over Bessel functions.



Instantons
Supergravity (classical field theory)

Non-trivial, “localized” solutions to the equations of motion which give finite values
for the supergravity action: Si,«(z) = 27 |m|y — 2mima

_

Instanton charge
String theory

D-instantons, which are D-branes localized to a single point in space-time.
Need to include open world-sheets with boundaries attaching to these.

Path integral now includes summing over the number of open world-sheets and
their topologies weighted by the Euler characteristic as g * together with factors to
compensate for the interchange of identical world-sheets and boundaries.

idi(_ ) idi(_ )d":eXp(;<O>+5<@>+...)

More information in [Green 95, Green-Gutperle 97, Polchinski 94]



Instantons

Arguments from previous slide motivates —

Instanton measure

? v
7 ~ —mm—

Ew,0(2) =2C(3)y 3/2-|—4C _1/2—|—27TZ v [m|o_af —Sinst (2) (H—O(y_l))

meZ\{0}

The divisor sum o_s(m) = > 4, d~? suggests that we are
summing over different states with the same value for the
action; a degeneracy.

Can be explained using a dual theory via T-duality.

[Green-Gutperle 97]


http://dx.doi.org/10.1016/S0550-3213(97)00269-1

INnstantons s —zrlmy—2rima
00 (2) = 2B +40(2)= 2 +2m 3 /o s(m)e 5 (140(7)

meZ\{0}
Can be explained using a dual theory via T-duality.

Type IIA string theory on R x S, T-duality  Type IIB string theory on R? x S},

+—>

D-particle with integer Ramond-Ramond charge n D-instanton with charge m = nd.
and worldline wrapping the circle d times.

Spartide — O Degeneracy = number of divisors of m
l r— 0 l
Sinstanton = 27 |nd|y — 2mi(nd)x o

[Green-Gutperle 97]


http://dx.doi.org/10.1016/S0550-3213(97)00269-1

Instantons
E0,0)(2) = 2032 +4¢(2) 27 P +21 Y/ |mlo_sf ”“St(1+0(y_1))

meZ\{0}

It is possible to derive the appearance of the entire divisor sum o_5(m) in the instanton
measure directly from physics.

The arguments are based on relating the D-particles of the previous slide to Kaluza-
Klein modes of M-theory compactified on a circle. These can then be counted by the

partition function of an SU(m) super Yang-Mills matrix model and the Witten index of
m D-particles.

For more information see [Kostov-Vanhove 98, Moore-Nekrasov-Shatashvili 00]



Lower dimensions — larger groups

Space-time: T% x RP

Ewa)(VIE) = Epg)(9) v e G(Z), ke K(R)

D=10—d G(R) K (R) G(Z)
v 10 SLy(R) SO2(R) SLy(Z)
9 SLy(R) x RT SO5(R) SLy(7Z) X Zo
8 SL3(R) x SLy(R) SO3(R) x SO5(R) SL3(7) x SLy(7Z)
7 SL5(R) SO5(R) SL5(Z)
6 Sping 5(R) (Sping(R) x Spins(R))/Z, Sping 5(Z)
5 Fs(R) USpg(R)/Zs Fs(Z)
4 7 (R) SUs(R)/Z; B (2)
3 Es(R) Spiny(R) /2y Es(Z)




Lower dimensions — larger groups

Space-time: T% x RP

Supersymmetry:

3(11 — D)(D — 8
at ( Aoy~ 2 . _)(2 )> D) (g) = 63ps

5(12 — D)(D — 7

ViR* : (AG/K _ 3 5 _)(2 )> 5((11?3) (g) = 40((2)0p 7 + 75(((?,)0)5D,6
6(14 — D)(D — 6 g

VR (Bam - 2= 60 9) = -|(660) |+ 106310

55 (s 85 (4
+ ?g((oj)o)éDﬁ =+ %5((1,)0)513,4

[Green-Russo-Vanhove 10, Pioline 15]

For discussions about the Kronecker deltas see [Pioline 15, Bossard-Kleinschmidt 15]

For equations with other G-invariant differential operators:
[Bossard-Verschinin 14, 15a ,15b]


http://dx.doi.org/10.1007/JHEP04(2015)057
http://dx.doi.org/10.1007/JHEP08(2015)102

Lower dimensions — larger groups

Space-time: T? x RP

2
Solutionsfor G = < E; (D = 4) o—o—i—o—o—o—o
1 3 4 5 6 7 8

Eg (D — )
D
R4 : g((() 3) (g) — ( )E(AS:3/279)7 >\S — 28A1 o
D
V4R4 : ( ) (g) — ( ) ()\5:5/279)- Weyl vector J
Z |79‘ At Character on B: \nak\X — |a!’\/ cC
~EB(Z)\G(Z aras) = |ay | |ag] ¥ e | ¥ = [¢ ¥ (He)
L Borel subgroup G = BK = NAK N unipotent radical

For details and other dimensions see; [Green-Russo-Vanhove 10a, 10b, Pioline 10,
Green-Miller-Russo-Vanhove 10, Green-Miller-Vanhove 15].
For D6R4 see [FGKP 815.1] and references therein.

Usually written with parabolic Eisenstein series. See Proposition 5.30 in [FGKP]


http://www.cambridge.org/core_title/gb/502216
http://dx.doi.org/10.1103/PhysRevD.81.086008
https://doi.org/10.1016/j.jnt.2013.05.018
https://doi.org/10.1007/JHEP03(2010)116
http://dx.doi.org/10.4310/CNTP.2010.v4.n3.a2
https://doi.org/10.1016/j.jnt.2013.05.018
http://www.cambridge.org/core_title/gb/502216

Remarks

New non-perturbative terms

Numerous consistency checks (also of new predictions).
See list of references at end of 82.4.3 [HG, Thesis]

Two different viewpoints:

The Fourier coefficients of automorphic forms give us perturbative and non-

perturbative scattering amplitude corrections which are difficult to compute
directly from string theory.

Theoretical physicist have devised a complex machinery (involving path integrals

over geometries, supersymmetry and vertex operators) that generate Fourier
coefficients of automorphic forms.


https://research.chalmers.se/en/publication/?id=250854

Small representations

R* 5((53) (9) = 2¢(3)E(As=3/2,9),  minimal representation
ViR 5((53) (9) = C(5)E(Ms=5/2,9). next-to-minimal representation

[Green-Miller-Russo-Vanhove 10, Pioline 10, Green-Miller-Vanhove 15]

The size of the representation is determined by: (real groups)

Irreducible Annihilator ideal of Closure of
+—> 4>

representation universal env. alg. U(g) nilpotent orbitin g
Differential operators

min and ntm
representations

Partial ordering

[Joseph 85, Green-Miller-Vanhove 15]


http://dx.doi.org/10.4310/CNTP.2010.v4.n3.a2
http://dx.doi.org/10.1007/JHEP03(2010)116
https://doi.org/10.1016/j.jnt.2013.05.018
https://doi.org/10.1016/0021-8693(85)90172-3
https://doi.org/10.1016/j.jnt.2013.05.018

Nilpotent orbits

For a nilpotent element X € g, let S Lg

Ox ={9Xg ' : g€ G(C)} 7

. . . O (51)
For classical groups, nilpotent orbits are

labeled by certain integer partitions. (42)
(with some caveats for D,, and very even partitions)

(411) (33)
Partial ordering: (321)
My An) < (ps st (3111) (222)
<
(2211) Ontm

k k
YNy pfori<k<N
—1 - 1 O (21111) Ohin

Closure: 0= ] @

0O'<0O

O (111111) Oy
[Collingwood-McGovern 93]


http://doi.org/10.1201/9780203745809

Small representations

Irreducible Annihilator ideal of Closure of
. <_> . <_> . . .
representation universal env. alg. U(g) nilpotent orbitin g
|
WE(7)

Local wave-front set of representation = = m,,:

> Col\T
Character X Infinitesimal around identity Z O( )'MO
orbits O T
WF(W) — U O Fourier transforms of
orbit O G-measures of orbits

co (m)#0

[Howe 78, Harish-Chandra 77, Barbasch-Vogan 80, Gourevitch-Sahi 18, 84]


http://eudml.org/doc/162577
https://doi.org/10.1016/B978-0-12-080550-1.50018-4
https://doi.org/10.1016/0022-1236(80)90026-9
https://arxiv.org/abs/1808.00890

Small representations

Irreducible Annihilator ideal of Closure of
. <_> o <_> . o .
representation universal env. alg. U(g) nilpotent orbitin g
|
Representation has implications for the vanishing WE ()

oroperties of Fourier coefficients .

Archimedean (real): [Matumoto 87]
‘Global (adelic):‘[Ginzburg—RaIIis—Soudry 03, Gomez-Gourevitch-Sahi 17,
Jiang-Liu-Savin 16]

(Non-archimedean counterpart: [Moeglin-Waldspurger 87])

Automorphic forms in small representations
have few non-vanishing Fourier coefficients



http://dx.doi.org/10.1007/BF01200363
http://dx.doi.org/10.1007/BF01404678
http://dx.doi.org/10.1007/s00229-003-0355-7
http://dx.doi.org/10.1112/S0010437X16007788
http://dx.doi.org/10.1090/ert/490

Fourier coefficients

To compute Fourier coefficients when G = SL, we had a

simplification of the moduli space G(R)/K(R) = H and could

rewrite the Eisenstein series using a /attice sums (without extra
constraints).

This will not always be possible for larger groups. To compute
Fourier coefficients here we turn to the adelic framework.



The ring of adeles

Completion of
Cauchy sequences

@ >IR:<@OO Q 'Qp

Standard norm || p-adic norm ||,

Archimedean Non-archimedean

For each prime p there is another norm. With ¢ € Q prime factorized as ¢ = p" - - - pk»
we define

Jl p ¥ if p=p, foranyi
q|, — .
o 1 otherwise

The p-adic completion of Z is: Z, = {z € Q, : |z|, < 1}.

Ring of adeles:

A=Rx H/ Q,

prime p

where the prime denotes a restriction to elements a = (as; as, as, as, az, . . .) such that,
for all but a finite number of primes p, a, € Z,.

This ensures that the global norm |a| =[] ., |a,|, converges.

p< o0



The ring of adeles
Q » R=Qx Q - Q,

Standard norm |-| p-adic norm ||,

For each prime p there is another norm. With ¢ € Q prime factorized as ¢ = p* - - - pk»
we define

B p; " if p=yp,; for any i
dl, = {1 otherwise
The p-adic completion of Zis: Z, = {z € Q, : [z[, < 1}.
Ring of adeles:
A =R X H, Q,
prime p

where the prime denotes a restriction to elements a = (a.; as, asz, as, az, . ..) such that,
for all but a finite number of primes p, a, € Z,.

This ensures that the global norm |a| =[] - |a,|, converges.

Q is embedded diagonally in A, thatisqg e Q — (¢;q,q,...) € A.

Q is discrete in A. We also have that Q\A is compact




Adelization

Compute
Automorphic forms on G(A) »  Q\A-Fourier coefficients
G(Z)\G(R)
Adelization = Restriction | 9= (9»;1,1,...)
G(@)\G(A)F{Hl}eG(Zp) |
Automorphic forms on G(R) YA\al-Fourier coefficients

For details see [FGKP 82, 86]


http://www.cambridge.org/core_title/gb/502216

Adelization

Automorphic forms on G(R) » Automorphic forms on G(A)
Adelization

7 is discrete in R Q is discrete in A

In particular, for Eisenstein series:

A
r(Agr) = Y |rge|"" - ENg) = Y |yg*”
~eB(Z)\G(Z) YEB(Q\G(Q)

ER()\v gR) — E()‘v (gR; 1,1,.. ))



Fourier coefficients

Let e be an additive character on A trivial on Q, let U be
a unipotent subgroup of G and ¢ an automorphic form
on G(A).

Let ¢ be a unitary character on U(A), that is, a group
homomorphism U(A) — U(1) trivial on U(Q).

T—{zEC:\zlzl}

Since Y(uiug) = ¥ (ug)Y(ug) we only need to specity ¢ on the
abelianization U(A)/[U, U](A) supported on roots AW (1) =

Au) \ A(fu, uf).

b H ex( 1 H o _— me € Q, charge or
p O‘ Z R mode number
OzEA(l) aEA(l)



Fourier coefficients

Let ¢ be a unitary character on U(A), that is, a group
homomorphism U(A) — U(1) trivial on U(Q).

Since Y(uiug) = ¥ (ur)Y(ug) we only need to specity ¢ on the
abelianization U(A)/[U, U](A) supported on roots AW (u) =
Au) \ A(fu, uf).

(Bl H exp(uaFy) — e( Z ma“g) mq € Q, charge or

mode number
acAD) (u) ac AW (u)

The associated Fourier coefficient:

Fuuplel(g) = / p(ug)y™" (u) du

U@Q\U(A)



Fourier coefficients

The associated Fourier coefficient:

Fuuplel(g) = / p(ug)y™" (u) du

UQ)\U(A)
It U is abelian, then

o(9) = Fualellg) + Y Fuulel(g)

Otherwise, let U+ = [U@ @] with U = U
and @ unitary character on U®(A). Then,



Fourier coefficients

T U is abelian, then

o(9) = Fualel(g) + >  Fuulel(g)

Otherwise, let U+ = [U@ @] with U = U
and @ unitary character on U®(A). Then,

Constantterm "Abelian coefficients" "Non-abelian coefficients"

For details see [FGKP 86]


http://www.cambridge.org/core_title/gb/502216

When manipu
describe U and

Whittaker pairs

ating Fourier coefficients it is convenient to
Y with a pair (S, f) € g(Q) x g(Q) as follows.

Let S € g(Q) be semisimple and such that ad(S) has rational
eigenvalues. For r € Q define g° = {x € g : ad(S)z = ra}
and let f € g°,(Q) which is a nilpotent element.

Then, Ug s is de

where gy is the

fined by the Lie algebra

us; =92, © gy N gy
centralizer of f in g under the adjoint action.

Additionally, with (, ) denoting the Killing form, v, is defined by

vy(u) = e((f

Jog(u))), u € Ug¢(A), e character on Q\A

[Gourevitch-Gomez-Sahi 17]


http://dx.doi.org/10.1112/S0010437X16007788

Whittaker pairs

Let S € g(Q) be semisimple and such that ad(S) has rational
eigenvalues. For r € Q define g° = {x € g : ad(S)z = rz}
and let f € g°,(Q) which is a nilpotent element.

Then, Ug ¢ is defined by the Lie algebra
us,; = g2, O g7 N gy
where g, is the centralizer of f in g under the adjoint action.

Additionally, with (, ) denoting the Killing form, v, is defined by
Vr(u) = e((f,log(u))), u € Ug¢(A), e character on Q\A
The associated Fourier coefficient is then
Foflllo) = [ elughbsw)tau

Us,f (Q\Us, s (A)

[Gourevitch-Gomez-Sahi 17]


http://dx.doi.org/10.1112/S0010437X16007788

PART II



Outline — Part I1

Automorphic representations and the global wave-front set

Different parabolic subgroups and their interpretations in
ohysics

BPS-orbits and character variety orbits
Computing Fourier coefficients

» Langlands' constant term formula

» (Casselman-Shalika formula

» The subgroup reduction formula

» Orbit methods

Kac-Moody groups  (in preparation for the last two talks on Friday)



Automorphic representations

Let A denote the space of automorphic forms on G(A) and G = H/p@o G(Q,).

gr € Gy acts on p € A by the right-regular action: [n(gs)¢|(h) = p(hgs) for h € G(A).

But the same right-regular action for g € G(R) does not preserve the K-finiteness
condition, and thus takes us outside the space of automorphic forms. We do however
have a right-regular action for k € K(R).

Besides the right-regular actions by Gy and K(R) we also have an action by the
universal enveloping algebra U(gr) as differential operators.

The actions by K(R) and U(gr) both commute with the action by G but not with
each other. Instead they give A the structure of a so called (ggr, K (R))-module.

An automorphic representation is an irreducible component of A under the
simultaneous action by (gg, K(R)) x Gy.

[Bump 09, FGKP 85]


https://doi.org/10.1017/CBO9780511609572
http://www.cambridge.org/core_title/gb/502216

Global wave-front set

In the adelic picture, the size of a representation is defined by the global wave-front set.

Jacobson-Morozov and Kostant:

Nilpotent orbits <« I » Conjugacy classes of SL,-triples (f,h,e) in g

For an (irreducible) automorphic representation «
(w) = {0, : F¢|lp] # 0 for B8 ¢ € mand triple (f, h,e)}

Lemma 3.3.1 in [Gourevitch-HG-Kleinschmidt-Persson-Sahi]:
Fsrle)(9) = Faamsaamrlel(vg), 7€ GQ)

Lemma 2.2.4 in [Gourevitch-HG-Kleinschmidt-Persson-Sahi]:
"The global notion supersedes the local notion. The former is not as restrictive."

[Collingwood-McGovern 93]
[Ginzburg-Rallis-Soudry 03, Gomez-Gourevitch-Sahi 17, Jiang-Liu- Savin 16]


https://doi.org/10.1201/9780203745809
http://dx.doi.org/10.1007/s00229-003-0355-7
http://dx.doi.org/10.1112/S0010437X16007788
http://dx.doi.org/10.1090/ert/490
https://arxiv.org/abs/1811.05966

Global wave-front set

This has consequences for all Fourier coefficients:

Theorem C, [Gomez-Gourevitch-Sahi 171

let p € mand f € O with O ¢ WF(r). Then, Fs ¢[¢] = 0 for any
Whittaker pair (S, f).

That is, we only need to consider Fourier coefficients with f in

the global wave-front set which is small for small automorphic
representations.



Parabolic Fourier coefficients

We will often consider the case where U is the unipotent
radical of a parabolic subgroup P.

Levi decomposition: P = LU where L is RS-

In particular: maximal parabolic subgroup P, for a simple
root o defined by L ® GL, x M where M is the semisimple
subgroup obtained by removing «a.

Example: G = SLy, a = oy O—e@—®
1T 2 3

(o o={(T0)} e={(CED) e



Parabolic Fourier coefficients

In term of Whittaker pairs we can describe a Fourier coefficient
on U for a maximal parabolic P, = LU by S, defined by a(S,) = 2
and 5(S,) = 0 for all other simple roots.

Then L = exp(gy~) and U = exp(g33). We see that L normalizes U
(under conjugation), and, for f € g°4(Q) and v € L(Q),

Fuuplel(9) = Fsarl#)(9) = Faam)saadq f11(79) = Funas, 1#1(79)

These L-orbits are called character variety orbits and we will soon
see how they are related to BPS-orbits.



Ditfferent cusps and their
physical interpretations

L=GL xM G Ly M (visualized for Ej)

+ String perturbation limit gs — 0 ) S

D-instantons, NS5-instantons

. I\/I—theory limit volume of M-theory torus — oo

M2, M5-instantons

+ Decompactification limit  radius of 5 in X — oo

Higher-dimensional BPS states, black holes

[Pioline 10, Green-Miller-Vanhove 15]


http://dx.doi.org/10.1007/JHEP03(2010)116
http://dx.doi.org/10.1016/j.jnt.2013.05.018

Asymptotics of maximal
parabolic Fourier coefficients

G = PK (notunique), P=UL, L=GLixM

Let ¢ be a spherical automorphic form on G(R) that is an
eigenfunction to the Laplace-Beltrami operator Ag/x on the

symmetric space G(R)/K(R) with a real eigenvalue.

Then, for a suitable coordinate t for the GGL; factor in L, we have
the following asymptotic behavior of a Fourier coefficient

Ful. ¢l (ua(tym) = cp(m)e ™ "(u), € U.alt) € GLi,m € M
T— Non-perturbative in ¢

[FGKP §814.2.4]


http://www.cambridge.org/core_title/gb/502216

Ditfferent cusps and their
physical interpretations

We will now focus on
t=1/r

+ Decompactification limit  radius of S'in X — oo @.@_I_@_@_@_o

Higher-dimensional BPS states, black holes Egp1 — Eq

in the case where space-time is 7% x R*, that is, G = E;. This
will give us information about BPS-states in 5 dimensions.



BPS-states

Dimension: 5 Preserved supercharges: 32

We have point particles whose electric charges ¢' furnish the
fundamental representation 27 of Eg.

This is also a representation for the maximal compact subgroup USps which has a
unique cubic invariant I3 that is also Eg invariant.

BPS-states are classified by (G L, x Eg)-orbits of charges which are determined by I;:

Type Conditions Dimension
+-BPS I3 #0 97
1eps [ £o0 26
] — 8[3 — O
L.BPS { S 17
OqtOqI ?é Y

[Ferrara-Maldacena 98, Becker-Becker-Schwarz 06, Green-Miller-Vanhove 15]


https://doi.org/10.1088/0264-9381/15/4/004
https://doi.org/10.1017/CBO9780511816086
https://doi.org/10.1016/j.jnt.2013.05.018

BPS-orbits and character orbits

These BPS-states in D = 5, when wrapped around a circle of
radius r, give rise to instanton contributions to £ =% in D = 4,

o )
l

The contributions are non-perturbative in the limit r — oo and

appear in the Fourier coefficients of 5<(f;4) corresponding to the
decompactification limit where L = GL; x Eg.

Fourier coefficients in L-orbits
(character variety orbits)

< > (GL1 x FEg)-BPS orbits



BPS-orbits and character orbits

These BPS-states in D = 5, when wrapped around a circle of

radius r, give rise to instanton contributions to £ =% in D = 4,

The contributions are non-perturbative in the limit » — oo and

appear in the Fourier coefficients of 5((]?;)4) corresponding to the

decompactification limit where L = GL; x Eg.

Fourier coefficients in L-orbits
(character variety orbits)

> (GL;1 x Fg)-BPS orbits

27 modes or charges m, 27 electric charges

Characters v with f € g% (Q)
dim(g°y) = 27 t Becomes Z



BPS-orbits and character orbits

The Eg in L acts on the charges m, by the fundamental
representation 27 and the L-orbits of the (non-trivial) charges are
of dimensions 17, 26 and 27.

[Miller-Sahi 12]

Compare with:

Type Conditions Dimension
5-BPS I3 # 0 27
teps (R WL #0 %
I; =2 —
%'BPS { 2213 9q" 17
OqtOqI ?é Y

[Ferrara-Maldacena 98, Becker-Becker-Schwarz 06, Green-Miller-Vanhove 15]


https://doi.org/10.1088/0264-9381/15/4/004
https://doi.org/10.1017/CBO9780511816086
https://doi.org/10.1016/j.jnt.2013.05.018

BPS-orbits and character orbits

The Eg in L acts on the charges m, by the fundamental
representation 27 and the L-orbits of the (non-trivial) charges are
of dimensions 17, 26 and 27.

These L-orbits are part of the following (coarser) G-orbits:
Oa,, Oa4,, O34,y respectively expressed with Bala-Carter labels.

BPS/L-orbit dim(L-orbit) Intersecting G-orbit Ez-orbits

1 O(3A1)/
§_BPS 17 O4, = Omin
O )
L.BPS 26 O, = Ontr o
Oop, = O
1-BPS 27 O,y 2
C) OAl — Omin

[Miller-Sahi 12] O Oy


https://doi.org/10.1016/j.jnt.2012.05.032

BPS-orbits and character orbits

58,)0:)4) (9)R* + ()2 g((fo:)4) (¢)VARY + ()3 8((11,)0:)4) (9) VS R*

BPS/L-orbit dim(L-orbit) Intersecting G-orbit

1-BPS 17 O4, = Omin

+-BPS 26 O24, = Ontm

+-BPS 27 Oza,)
WF(E(((f():)4)) = Onmin %-BPS contributions R4 min rep
W(S((f():)4)) = Ohtm 1-BPS contributions V4R ntm rep

E‘
AR
25
L
U
O
o
=
colr—

-BPS contributions VOR?



BPS degeneracies

Why do want to count all states that have a certain charge ~?
The degeneracy d(v) is related to the entropy:

S — kB log d("}/) — SBekenStem_Ha\/\/kmg -+ quaﬂtum COrreCtIOﬂS

L Boltzmann's constant
Area

SBekenstein—Hawking — 1

Relates microscopic quantum description to macroscopic thermodynamic quantity

As discussed in yesterday's overview talk, for BPS black holes in string theory we
should count BPS states. We want to compare calculations done with a D=5 BPS
index with degeneracies from D=4 Fourier coefficients.

For details see [FGKP §815.4]


http://www.cambridge.org/core_title/gb/502216

BPS degeneracies

We will now consider the Fourier coefficients of the FE-
automorphic form 5(0 0) ( ) = 2¢(3) E(As=3/2, g) With respect
to the decompactification limit P, = LU.

Will present results first and describe methods later.

Constant term: Radius of compactified circle.
| r Parameter for GL; in L.

/ Eooy (ug)du = 1" (g) + An€(4)r°

U(Z)\U(R)

Constant term contains amplitude from higher dimension.

[Bossard-Pioline 17, Bossard-Kleinschmidt 16, FGKP §814.2.4]


https://doi.org/10.1007/JHEP01(2017)050
http://dx.doi.org/10.1007/JHEP01(2016)164
http://www.cambridge.org/core_title/gb/502216

BPS degeneracies

Constant term:

D= D=
/ g((o 0) ) (ug)du = TSS((O,O)E)) (9) + 4mE(4)r°
U(Z)\U(R)

Since 8(((?54) IS in @ minimal representation, the only other non-trivial, non-vanishing

Fourier modes are those attached to the minimal orbit O, corresponding to %-BPS
contributions.

Recall: Fourier coefficients in the same BPS/L-orbit are related by translation of the
argument so we only need to compute one case. We pick ¢ with f = kE_,., k € Z.

[ e oyt -

Hm—1(f)”3/2 03(k)Ks/2(2m k|7 Hm_l(f)H)wf(u)
U(Z)\U(R)

g =ua(r)mk € (U(GL, x M)K)(R) L Norm invariant under K (R) = USps(R)

[Bossard-Pioline 17, Bossard-Kleinschmidt 16, FGKP §814.2.4]


https://doi.org/10.1007/JHEP01(2017)050
http://dx.doi.org/10.1007/JHEP01(2016)164
http://www.cambridge.org/core_title/gb/502216

BPS degeneracies

/5(00 (u'g)s(u) du' =

||3/2 US(k)K3/2(27T k|7 Hm‘l(f)H)wf(u)
U(Z)\U(R)

The (abelian) Fourier coefficients for 800) and 8(10)
corresponding to the decompactification limit have been
computed for 3 < D < 10in [Bossard-Pioline 17].

In all cases, the degeneracies given by the divisor sums
match the corresponding BPS-index computed by a helicity
supertrace.

However, method for computing Fourier coefficients was
difficult to generalize to other maximal parabolic subgroups.

[Bossard-Pioline 17]


https://doi.org/10.1007/JHEP01(2017)050

BPS degeneracies

Similar story for half-maximal supersymmetry.
Space-time: (K3 x T?) x R* Supersymmetry: N/ =4

The reciprocals of the discriminant n** and the unique weight 10 Siegel modular cusp
form @, the Igusa cusp form, are generating functions for 5-BPS and 1-BPS indices
(degeneracies) respectively.

The same BPS indices are found in the Fourier coefficients for the decompactification
limit of certain automorphic forms on SOg24(R)/(SOs(R) x SO94(R)) that appear in
the D = 3 effective action.

[Bossard-Cosnier-Horeau-Pioline 17]


https://doi.org/10.1016/j.physletb.2016.12.035

Computing Fourier coefficients

Computing Fourier coefficients of automorphic forms is, in general, very difficult.
Because of their importance in string theory (as well as in the spectral decomposition

of L*(G(Q)\G(A))) we focus on Eisenstein series.
Previously we have had simplifying circumstances such as:

» Symmetric space with additional structure (e.g. SL»(R)/SO5(R) = H)
» Lattice sum representation which allows for Poisson resummation

* Input from “external” sources (such as string theory)

We will now take a more general approach using the adelic framework discussed in
previous slides.



Classification of Fourier
coefficients

We have considered Fourier coefficients with respect to the
unipotent radical U of different parabolic subgroups P.

The minimal parabolic subgroup is the Borel subgroup B (for
a fixed choice of simple roots) whose unipotent radical N is
a maximal unipotent subgroup.

A Fourier coefficient with respect to N and character
will be denoted by W,, and is called a Whittaker coefficients
because of its transformation property:

Wylel(ng) = w(n)Wylel(g), n € N(A)




Classification

of Fourier

coeftficients

A Fourier coefficient with respect to N and character

will be denoted by W,, and is cal
because of its transformation pro

led a Whittaker coefficients
Derty:

Walel(ng) = v (n)Wylp

(9), n e N(A)

f ¢ is spherical, Wy|¢](g) is then determined by Wy |¢|(a)

where g = nak.

Short-hand notation: Wy A] = Wy E(A, -)]

These are easier to compute than Fourier coefficients of smaller unipotent subgroups



Classification of Fourier
coefficients

Character v on N is determined by m, € Q for simple roots «a € II:

H exp(naF

H c (Z mana) (Assume ker(e) = Q)

a€cll a€ell
Condition Name
All m,, = Constant term
Allm, =1 Unramified
Allm, # 0 Generic
Otherwise Degenerate




Langlands' constant term

formula
Constant term (¢ = 1): g = nak
Weyl group W
WA (M)
/E()\,n’g) dn' = Z a7 M (w, \) H 51+ )
N(@\N(4) el o
[Langlands 76]

Similar formula for the constant term for a maximal parabolic subgroup P, also exists

due to [Mceglin-Waldspurger 95] with an additional factor on the right-hand side:
an Eisenstein serieson M in L = GL; x M.

See also [FGKP §88.9]


https://doi.org/10.1007/BFb0079929

Generic Whittaker coetficients

Using the Bruhat decomposition

G(Q = |J B@QuwB(@Q)

weW
one can show that, for generic Whittaker coefficients,

Wy Al(g) = /E(A,ng)w(n)_ldn = ] Wyu[N(g)  Euleriar

N(Q)\N(4) poc
t Primes p where Q. = R

W, Al(9) :/|wlongna‘;\+p ¢p(n)_1dn
N(Qp)

W Needs to be computed by hand, but W, ,, for p < co can be computed using
the Casselman-Shalika formula.



Casselman—-Shalika formula

Wp,w [)\](CL) — / ‘wlongna‘;+p wp(n)_ldn — L Z G(UJ)\) ‘a‘;UA-Fp
N(Qp) C()\) weW

[Casselman-Shalika 80]

Presented here for unramified character. See [FGKP §9] for generic case.


http://www.cambridge.org/core_title/gb/502216
https://eudml.org/doc/89456

Reduction formula

Degenerate Whittaker coefficients do not factorize in general and
the Casselman-Shalika formula cannot be used.

However, the coefficient can be reduced to a generic Whittaker
coefficient on a subgroup G" with Weyl group W’. Using carefully
chosen representatives wewy,,, of W/W":

WelN(@) = 37 Ja] e om0 A (w7 \YWLL [N)(L)

wcwfongGW/W’ T
Generic Whittaker coefficient on &
H £((Aa)) ¢ (n) = ¥(ana")
&( 1 + (M) Woya[A(1) = |a| =X (X, a)

wa<0

[Hashizume 82, Fleig-Kleinschmidt-Persson 14]


http://doi.org/10.32917/hmj/1206133751
http://dx.doi.org/10.4310/CNTP.2014.v8.n1.a2

Fourier coeftficients in terms of
Whittaker coefticients

For G simply-laced we have the following results from
‘Gourevitch-HG-Kleinschmidt-Persson-Sahi] which supersedes
'Ahlen-HG-Kleinschmidt-Liu-Persson 18] (G = SL,, n > 5)
'HG-Kleinschmidt-Persson 16] (G = SLs or SLy)

Let P, = LU be a maximal parabolic subgroup of G. Let vmin and onm be
automorphic forms in a minimal and next-to-minimal representation of G(A)

respectively. Then, for

* S € O0min: Fuy,lomin](9) = Wy, [emin](709) 70 € L(Q) such that f' := Ad(v0) f € g-a,,

* [ & Omin: Fuy,leminl(g) =0


https://arxiv.org/abs/1811.05966v1

Fourier coeftficients in terms of
Whittaker coefticients

Let P, = LU be a maximal parabolic subgroup of G. Let vmin and pnm be
automorphic forms in a minimal and next-to-minimal representation of G(A)
respectively. Then, for

* € Omin: Fuy,lemin](9) = Wy, [min] (709)

* f §§ Omin "ranf :Spmin:(g) =0

* f < Omin5 IU,¢f[§0ntm](g) — W¢f/ [mein](fyog> + S: S: S: W¢f/_|_f// [gpntm](fyfy()g)

ieltm y€Ts freg”,

Certain subsets of L(Q) t

Yo € L(Q) such that f":= Ad(y)f € 90, [ ={i:0; L ay,}

[Gourevitch-HG-Kleinschmidt-Persson-Sahi]
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Fourier coeftficients in terms of
Whittaker coefticients

Let P, = LU be a maximal parabolic subgroup of G. Let vmin and pnm be
automorphic forms in a minimal and next-to-minimal representation of G(A)
respectively. Then, for

* € Omin: Fuy,lemin](9) = Wy, [min] (709)

* f 5? Omin "TU,wf :$0min:(g) =0

* /€ Onmin: JTU,wf[SOntm](g) = W¢f, [QDM](’YOQ) =+ S: S: S: W¢f/_|_f// ©ntm) (7709)

icItm el fres”,,
* € Ontm : fU,¢f[90ntm](g) :/Wwf[Spntm](U;?Og)dv

. V(A)
* f §é Ontm FU,wf [Spntm](g) =0

% € L(Q) such that f*:= Ad(0)f € g-a,, ™ ={i:0; L oy}
Yo € L(Q) such that f:= Ad(70)f € ®i10-a,

[Gourevitch-HG-Kleinschmidt-Persson-Sahi]


https://arxiv.org/abs/1811.05966v1

Fourier coeftficients in terms of
Whittaker coefticients

The same paper also gives the full expansion of such automorphic
forms in terms of Whittaker coefficients. Generalizes Piatetski-

Shapiro and Shalika formula for cusp forms to small automorphic
representations.

For non-simply-laced groups, or larger automorphic representations,
Whittaker coefficients are not always enough.

We give a description of the set of Fourier coefficients that would
replace these in theorems similar to above.,

Finally, we present some sujficient conditions for a Fourier
coefficient to be Eulerian.

[Gourevitch-HG-Kleinschmidt-Persson-Sahi]


https://arxiv.org/abs/1811.05966v1

Fourier coeftficients in terms of
Whittaker coefticients

Carlier papers for SL,, relied on matrix manipulations. In this
paper for reductive groups we used Whittaker pairs (S, f) which

give a convenient way to describe both the unipotent subgroup
and the character.

By deformations S(t) = S + tZ of these pairs we could relate
Fourier coefficients to the left and right of critical points t; where
the unipotent subgroup Usg) jJumps.

FUp, W .
Us)y=U Usy =N
. ) t

to 1 lo

[Gourevitch-HG-Kleinschmidt-Persson-Sahi]
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Kac—-Moody groups

0—d G(R) K(R) G(Z)

SLy(R) SO5(R) SLy(7)

9 SLo(R) x R SO4(R) SLy(Z) X Zo

8 SL3(R) x SLy(R) SO3(R) x SO5(R) SL3(7Z) x SLy(Z)

7 SLs(R) S05(R) SLs(7Z)

6 Sping 5(R) (Sping(R) x Sping(R))/Zy Sping 5(Z)

5 Es(R) USps(R)/Zs Es(Z)

4 E7(R) SUs(R)/Z; Er(Z)

3 Ey(R) Spings(R)/Zs Ey(Z)
Ey(R)



Kac—-Moody groups

Eisenstein series can formally be defined in the same way for Kac-Moody groups
A+
EXg)= > |yl*"
1€B(Q\G(Q)

Convergence is established for the affine case [Garland 06] and for rank 2 hyperbolic
[Carbone-Lee-Liu 17], but open question for general case.

However, B and B~ are not conjugate (no longest Weyl word wjeng) and there is no
known relationship between the corresponding Eisenstein series in the general case.


https://projecteuclid.org/euclid.dmj/1161093264#info
http://dx.doi.org/10.1007/s00208-016-1428-8

Kac—-Moody groups

Langlands' constant term formula generalized for affine case in [Garland 01]

w (Ala))
/E(A n'g)dn' = ) la|"*"" M(w,\) H§1+ (Na))

N(Q\N(4) vy st
L Infinite order Infinitely many roots

String theory predicts a finite number of terms for the zero-mode, that is, a finite
number of perturbative contributions.

This puzzle was resolved in [Fleig-Kleinschmidt 12]:

For A = A\, = 2sA;p with s = 3/2 and s = 5/2 (corresponding to the R* and V*R*
coefficients) the sum collapses to a finite number of terms due to M (w, \) eventually
vanishing.


http://dx.doi.org/10.1090/pspum/090/01526

Kac—-Moody groups

Because of the lack of longest Weyl word, generic Whittaker coefficients vanish.

Recall the following rewriting for a generic Whittaker coefficient in the finite case:

WelN(g) = [ EQung)itmn) ' = T WoslNie)  WyalN0) = [ funmgnal) ™ vy (m) '

N(Q)\N(A) P00 N(Qp)

In the Kac-Moody case, one defines a corresponding coefficient by replacing the
local factors with

)= [ Inal}™ vy o)

N~ (Qp)

which allows for a generalization of the Casselman-Shalika formula in the affine case
[Patnaik 17]


http://dx.doi.org/10.1353/ajm.2017.0003

Kac—-Moody groups

In the same way as for the finite case, the computation of degenerate Whittaker
coefficient reduces to that of generic coefficients on a subgroup.

In [Fleig-Kleinschmidt-Persson 14] it was shown that the only non-vanishing (non-
zero mode) Whittaker coefficients for E()\,) on Ey, Eyy and Ey; with s = 3/2 are those
that are maximally degenerate, that is, are generic on an S L, subgroup.

For the finite-dimensional case, this behavior is typical for an automorphic form
in @ minimal representation, but such a representation has not been defined for
Kac-Moody groups. There is, for example, no notion of a minimal nilpotent orbit.

The story is similar for s = 5/2 with only Whittaker coefficients that are generic on at
most an SL, x SLy subgroup are non-vanishing, which is typical for an automorphic
form in a next-to-minimal representation.

Conjecture: These Eisenstein series generate a generalization of a minimal and
next-to-minimal representation respectively.

[Fleig-Kleinschmidt-Persson 14]


http://dx.doi.org/10.4310/CNTP.2014.v8.n1.a2

Thank you!

Slides available at:

hgustafsson.se



