ORCID: 0000-0002-3364-1547 Google scholar: Henrik Gustafsson
Representation theory, the Langlands program, Arthur's endoscopic classification of representations and the Sarnak-Xue density hypothesis.
Whittaker functions for p-adic groups and solvable lattice models
Fourier coefficients of automorphic forms in small automorphic representations
Eisenstein series and automorphic representations
Philipp Fleig, Henrik P. A. Gustafsson, Axel Kleinschmidt, Daniel Persson
Cambridge University Press, Cambridge Studies in Advanced Mathematics (2018)
ISBN 9781107189928
arXiv:1511.04265 [math.NT]
The Cohomological Sarnak-Xue Density Hypothesis for $SO_5$ Shai Evra, Mathilde Gerbelli-Gauthier, Henrik P. A. Gustafsson arXiv:2309.12413 [math.NT]
Iwahori-metaplectic duality Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson Journal of the London Mathematical Society (2024) arXiv:2112.14670 [math.RT]
Metaplectic Iwahori Whittaker functions and supersymmetric lattice models Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson arXiv:2012.15778 [math.RT]
Eulerianity of Fourier coefficients of automorphic forms Dmitry Gourevitch, Henrik P. A. Gustafsson, Axel Kleinschmidt, Daniel Persson, Siddhartha Sahi AMS : Representation Theory 25 (2021) 481-507 arXiv:2004.14244 [math.NT]
Fourier coefficients of minimal and next-to-minimal automorphic representations of simply-laced groups Dmitry Gourevitch, Henrik P. A. Gustafsson, Axel Kleinschmidt, Daniel Persson, Siddhartha Sahi Canadian Journal of Mathematics, 74(1), 122-169 arXiv:1908.08296 [math.NT] Supersedes and extends the second half of arXiv:1811.05966v1 which was split into two parts: this paper and arXiv:1811.05966 (v2 and later) under a new title.
Colored vertex models and Iwahori Whittaker functions Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson Selecta Mathematica, volume 38, article number 78, (2024) arXiv:1906.04140 [math.RT]
Colored five-vertex models and Demazure atoms Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson Journal of Combinatorial Theory, Series A 178 (Feb, 2021) 105354 arXiv:1902.01795 [math.CO]
A reduction principle for Fourier coefficients of automorphic forms Dmitry Gourevitch, Henrik P. A. Gustafsson, Axel Kleinschmidt, Daniel Persson, Siddhartha Sahi Mathematische Zeitschrift volume 300, pages 2679–2717 (2022) arXiv:1811.05966 [math.NT] Earlier preprint title: Fourier coefficients and small automorphic representations The paper was in August 2019 split up into two parts with an extension of the second part appearing as arXiv:1908.08296
Vertex operators, solvable lattice models and metaplectic Whittaker functions Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson Communications in Mathematical Physics 380 (Dec, 2020), 535–579 arXiv:1806.07776 [math.RT]
Fourier coefficients attached to small automorphic representations of SLn(A) Olof Ahlén, Henrik P. A. Gustafsson, Axel Kleinschmidt, Baiying Liu, Daniel Persson Journal of Number Theory 192 (Nov, 2018) 80–142 arXiv:1707.08937 [math.RT]
Small automorphic representations and degenerate Whittaker vectors
Henrik P. A. Gustafsson, Axel Kleinschmidt, Daniel Persson
Journal of Number Theory 166 (Sep, 2016) 344–399
arXiv:1412.5625 [math.NT]
Automorphic forms and string theory:
Small automorphic representations and non-perturbative effects
(2017)
Author: Henrik P. A. Gustafsson. Advisor: Daniel Persson (Chalmers)
PhD Thesis, Chalmers University of Technology CPL:250854
Automorphic string amplitudes
(2015)
Author: Henrik P. A. Gustafsson. Advisor: Daniel Persson (Chalmers)
Licentiate Thesis, Chalmers University of Technology CPL:226156
Eisenstein Series and Instantons in String Theory (2013) Author: Henrik P. A. Gustafsson. Advisor: Daniel Persson (Chalmers) Master Thesis, Chalmers University of Technology CPL:178059
Minimal Surfaces for Scattering Amplitudes and the Harmonic Oscillator (2012) Author: Henrik P. A. Gustafsson. Advisor: Pedro Vieira (Perimeter Institute) Master Thesis/Essay, Perimeter Institute and University of Waterloo. Only made available internally, but I provide my own download link above.